Philosophiae Naturalis Principia Mathematica

Philosophiae Naturalis Principia Mathematica
Author: Isaac Newton
Pages: 829,091 Pages
Audio Length: 11 hr 30 min
Languages: la

Summary

Play Sample

Lemma XV.

Si ab Ellipseos vel Hyperbolæ cujusvis umbilicis duobus S, H, ad punctum quodvis tertium V inflectantur rectæ duæ SV, HV, quarum una HV æqualis sit axi transverso figuræ, altera SV a perpendiculo TR in se demisso bisecetur in T; perpendiculum illud TR sectionem Conicam alicubi tangit: & contra, si tangit, erit VH æqualis axi figuræ.

Secet enim VH sectionem conicam in R, & jungatur SR. Ob æquales rectas TS, TV, æquales erunt anguli TRS, TRV. Bisecat ergo RT angulum VRS & propterea figuram tangit: & contra.     Q.E.D.

Prop.XVIII.Prob.X.

Datis umbilico & axibus transversis describere Trajectorias Ellipticas & Hyperbolicas, quæ transibunt per puncta data, & rectas positione datas contingent.

Sit S communis umbilicus figuraram; AB longitudo axis transversi Trajectoriæ cujusvis; P punctum per quod Trajectoria debet transire; & TR recta quam debet tangere. Centro P intervallo AB - SP, si orbita sit Ellipsis, vel AB + SP, si ea sit Hyperbola, describatur circulus HG. Ad tangentem TR demittatur perpendiculum ST, & producatur ea ad V ut sit TV æqualis ST; centroq; V & intervallo AB describatur circulus FH. Hac methodo sive dentur duo puncta P, p, sive duæ tangentes TR, tr, sive punctum P & tangens TR, describendi sunt circuli duo. Sit H eorum intersectio communis, & umbilicis S, H, axe illo dato describatur Trajectoria. Dico factum. Nam Trajectoria descripta (eo quod PH + SP in Ellipsi, & PH - SP in Hyperbola æquatur axi) transibit per punctum P, & (per Lemma superius) tanget rectam TR. Et eodem argumento vel transibit eadem per puncta duo P, p, vel tanget rectas duas TR, tr.     Q.E.F.

Prop.XIX.Prob.XI.

Circa datum umbilicum Trajectoriam Parabolicam describere, quæ transibit per puncta data, & rectas positione datas continget.

Sit S umbilicus, P punctum & TR tangens trajectoriæ describendæ. Centro P, intervallo PS describe circulum FG. Ab umbilico ad tangentem demitte perpendicularem ST, & produc eam ad V, ut sit TV æqualis ST. Eodem modo describendus est alter circulus fg, si datur alterum punctum p; vel inveniendum alterum punctum v, si datur altera tangens tr; dein ducenda recta IF quæ tangat duos circulos FG, fg si dantur duo puncta P, p; vel transeat per duo puncta V, v, si dantur duæ tangentes TR, tr, vel tangat circulum FG & transeat per punctum V, si datur punctum P & tangens TR. Ad FI demitte perpendicularem SI, eamq; biseca in K, & axe SK, vertice principali K describatur Parabola. Dico factum. Nam Parabola ob æquales SK & IK, SP & FP transibit per punctum P; & (per Lemmatis XIV. Corol. 3.) ob æquales ST & TV & angulum rectum STR, tanget rectam TR.     Q.E.F.

Prop.XX.Prob.XII.

Circa datum umbilicum Trajectoriam quamvis specie datam describere, quæ per data puncta transibit & rectas tanget positione datas.

Cas.1. Dato umbilico S, describenda sit Trajectoria ABC per puncta duo B, C. Quoniam Trajectoria datur specie, dabitur ratio axis transversi ad distantiam umbilicorum. In ea ratione cape KB ad BS, & LC ad CS. Centris B, C, intervallis BK, CL, describe circulos duos, & ad rectam KL, quæ tangat eosdem in K & L, demitte perpendiculum SG, idemq; seca in A & a, ita ut sit SA ad AG & Sa ad aG, ut est SB ad BK, & axe Aa, verticibus A, a, describatur Trajectoria. Dico factum. Sit enim H umbilicus alter figuræ descriptæ, & cum sit SA ad AG ut Sa ad aG, erit divisim Sa - SA seu SH ad aG - AG seu Aa in eadem ratione, adeoq; in ratione quam habet axis transversus figuræ describendæ ad distantiam umbilicorum ejus; & propterea figura descripta est ejusdem speciei cum describenda. Cumq; sint KB ad BS & LC ad CS in eadem ratione, transibit hæc Figura per puncta B, C, ut ex Conicis manifestum est.

Cas.2. Dato umbilico S, describenda sit Trajectoria quæ rectas duas TR, tr alicubi contingat. Ab umbilico in tangentes demitte perpendicula ST, St & produc eadem ad V, v, ut sint TV, tv æquales TS, ts. Biseca Vv in O, & erige perpendiculum infinite OH, rectamq; VS infinite productam seca in K & k ita, ut sit VK ad KS & Vk ad kS ut est Trajectoriæ describendæ axis transversus ad umbilicorum distantiam. Super diametro Kk describatur circulus secans rectam OH in H; & umbilicis S, H, axe transverso ipsam VH æquante, describatur Trajectoria. Dico factum. Nam biseca Kk in X, & junge HX, HS, HV, Hv. Quoniam est VK ad KS ut Vk ad kS; & composite ut VK + Vk ad KS + kS; divisimq; ut Vk - VK ad kS - KS id est ut 2VX ad 2KX & 2KX ad 2SX, adeoq; ut VX ad HX & HX ad SX, similia erunt triangula VXH, HXS, & propterea VH erit ad SH ut VX ad XH, adeoq; ut VK ad KS. Habet igitur Trajectoria; descriptæ axis transversus VH eam rationem ad ipsius umbilicorum distantiam SH, quam habet Trajectoriæ describendæ axis transversus ad ipsius umbilicorum distantiam, & propterea ejusdem est speciei. Insuper cum VH, vH æquentur axi transverso, & VS, vS a rectis TR, tr perpendiculariter bisecentur, liquet, ex Lemmate XV, rectas illas Trajectoriam descriptam tangere.     Q.E.F.

Cas.3. Dato umbilico S describenda sit Trajectoria quæ rectam TR tanget in puncto dato R. In rectam TR demitte perpendicularem ST, & produc eandem ad V, ut sit TV æqualis ST. Junge VR, & rectam VS infinite productam seca in K & k, ita ut sit VK ad SK & Vk ad Sk ut Ellipseos describendæ axis transversus ad distantiam umbilicorum; circuloq; super diametro Kk descripto, secetur producta recta VR in H, & umbilicis S, H, axe transverso rectam HV æquante, describatur Trajectoria. Dico factum. Namq; VH esse ad SH ut VK ad SK, atq; adeo ut axis transversus Trajectoriæ describendæ ad distantiam umbilicorum ejus, patet ex demonstratis in Casu secundo, & propterea Trajectoriam descriptam ejusdem esse speciei cum describenda: rectam vero TR qua angulus VRS bisecatur, tangere Trajectoriam in puncto R, patet ex Conicis.     Q.E.F.

Cas.4. Circa umbilicum S describenda jam sit Trajectoria APB, quæ tangat rectam TR, transeatq; per punctum quodvis P extra tangentem datum, quæq; similis sit figuræ apb, axe transverso ab & umbilicis s, h descriptæ. In tangentem TR demitte perpendiculum ST, & produc idem ad V, ut sit TV æqualis ST. Angulis autem VSP, SVP fac angulos hsq, shq æquales; centroq; q intervallo quod sit ad ab ut SP ad VS describe circulum secantem figuram apb in p. Junge sp & age SH quæ sit ad sh ut est SP ad sp quæq; angulum PSH angulo psh & angulum VSH angulo psq æquales constituat. Deniq; umbilicis S, H, axe distantiam VH æquante, describatur sectio conica.

Dico factum. Nam si agatur sv quæ sit ad sp ut est sh ad sq, quæq; constituat angulum vsp angulo hsq & angulum vsh angulo psq æquales, triangula svh, spq erunt similia, & propterea vh erit ad pq ut est sh ad sq, id est (ob similia triangula VSP, hsq) ut est VS ad SP seu ab ad pq. Æquantur ergo vh & ab. Porro ob similia triangula VSH, vsh est VH ad SH ut vh ad sh, id est, axis Conicæ actionis jam descripta: ad illius umbilicorum intervallum, ut axis ab ad umbilicorum intervallum sh, & propterea figura jam descripta similis est figuræ apb. Transit autem hæc figura per punctum P, eo quod triangulum PSH simile sit triangulo psh; & quia VH æquatur ipsius axi & VS bisecatur perpendiculariter a recta TR tangit eadem rectam TR.     Q.E.F.

Lemma XVI.

A datis tribus punctis ad quartum non datum inflectere tres rectas quarum differentiæ vel dantur vel nullæ sunt.

Cas.1. Sunto puncta illa data A, B, C & punctum quartum Z, quod invenire oportet: Ob datam differentiam linearum AZ, BZ, locabitur punctum Z in Hyperbola cujus umbilici sunt A & B, & axis transversus differentia illa data. Sit axis ille MN. Cape PM ad MA ut est MN ad AB, & erecto PR perpendiculari ad AB, demissoq; ZR perpendiculari ad PR, erit ex natura hujus Hyperbolæ ZR ad AZ ut est MN ad AB. Simili discursu punctum Z locabitur in alia Hyperbola, cujus umbilici sunt A, C & axis transversus differentia inter AZ & CZ, duciq; potest QS ipsi AC perpendicularis, ad quam si ab Hyperbolæ hujus puncto quovis Z demittatur normalis ZS, hæc fuerit ad AZ ut est differentia inter AZ & CZ ad AC. Dantur ergo rationes ipsarum ZR & ZS ad AZ, & idcirco datur earundem ZR & ZS ratio ad invicem; adeoq; rectis RP, SQ concurrentibus in T, locabitur punctum Z in recta TZ positione data. Eadem Methodo per Hyperbolam tertiam, cujus umbilici sunt B & C & axis transversus differentia rectarum BZ, CZ, inveniri potest alia recta in qua punctum Z locatur. Habitis autem duobus locis rectilineis, habetur punctum quæsitum Z in earum intersectione,   Q.E.I.

Cas.2. Si duæ ex tribus lineis, puta AZ & BZ æquantur, punctum Z locabitur in perpendiculo bisecante distantiam AB, & locus alius rectilineus invenietur ut supra.     Q.E.I.

Cas.3. Si omnes tres æquantur, locabitur punctum Z in centro circuli per puncta A, B, C transeuntis.     Q.E.I.

Solvitur etiam hoc Lemma problematicum per Librum. Tactionum Apollonii a Vieta restitutum.

Prop.XXI.Prob.XIII.

Trajectoriam circa datum umbilicum describere, quæ transibit per puncta data & rectas positione datas continget.

Detur umbilicus S, punctum P, & tangens TR, & inveniendus sit umbilicus alter H. Ad tangentem demitte perpendiculum ST, & produc idem ad Y, ut sit TY æqualis ST, & erit YH æqualis axi transverso. Junge SP, HP & erit SP differentia inter HP & axem transversum. Hoc modo si dentur plures tangentes TR, vel plura puncta P, devenietur semper ad lineas totidem YH, vel PH, a dictis punctis Y vel P ad umbilicum H ductas, quæ vel æquantur axibus, vel datis longitudinibus SP differunt ab iisdem, atq; adeo quæ vel æquantur sibi invicem, vel datas habent differentias; & inde, per Lemma superius, datur umbilicus ille alter H. Habitis autem umbilicis una cum axis longitudine (quæ vel est YH, vel si Trajectoria Ellipsis est, PH + SP; sin Hyperbola PH - SP) habetur Trajectoria.     Q.E.I.

Scholium.

Casus ubi dantur tria puncta sic solvitur expeditius. Dentur puncta B, C, D. Junctas BC, CD produc ad E, F, ut sit EB ad EC ut SB ad SC, & FC ad FD ut SC ad SD. Ad EF ductam & productam demitte normales SG, BH, inq; GS infinite producta cape GA ad AS & Ga ad aS ut est HB ad BS; & erit A vertex, & Aa axis transversus Trajectoriæ: quæ, perinde ut GA minor, æqualis vel major fuerit quam AS, erit Ellipsis, Parabola vel Hyperbola; puncto a in primo casu cadente ad eandem partem lineæ GK cum puncto A; in secundo casu abeunte in infinitum; in tertio cadente ad contrariam partem lineæ GK. Nam si demittantur ad GF perpendicula CI, DK, erit IC ad HB ut EC ad EB, hoc est ut SC ad SB; & vicissim IC ad SC ut HB ad SB, seu GA ad SA. Et simili argumento probabitur esse KD ad SD in eadem ratione. Jacent ergo puncta B, C, D in Conisectione circa umbilicum S ita descripta, ut rectæ omnes ab umbilico S ad singula Sectionis puncta ductæ, sint ad perpendicula a punctis iisdem ad rectam GK demissa in data illa ratione.

Methodo haud multum dissimili hujus problematis solutionem tradit Clarissimus Geometra De la Hire, Conicorum suorum Lib.VIII.Prop.XXV.



SECT.V.

Inventio orbium ubi umbilicus neuter datur.

Lemma XVII.

Si a datæ conicæ sectionis puncto quovis P, ad Trapezii alicujus ABCD, in Conica illa sectione inscripti, latera quatuor infinite producta AB, CD, AC, DB, totidem rectæ PQ, PR, PS, PT in datis angulis ducantur, singulæ ad singula: rectangulum ductarum ad opposita duo latera PQ × PR, erit ad rectangulum ductarum ad alia duo latera opposita PS × PT in data ratione.

Cas.1. Ponamus imprimis lineas ad opposita latera ductas parallelas esse alterutri reliquorum laterum, puta PQ & PR lateri AC, & PS ac PT lateri AB. Sintq; insuper latera duo ex oppositis, puta AC & BD, parallela. Et recta quæ bisecat parallela illa latera erit una ex diametris Conicæ sectionis, & bisecabit etiam RQ. Sit O punctum in quo RQ bisecatur, & erit PO ordinatim applicata ad diametrum illam. Produc PO ad K ut sit OK æqualis PO, & erit OK ordinatim applicata ad contrarias partes diametri. Cum igitur puncta A, B, P & K sint ad Conicam sectionem, & PR secet AB in dato angulo, erit (per Prop. 17 & 18 Lib. III Apollonii) rectangulum PQK ad rectangulum AQB in data ratione. Sed QK & PR æquales sunt, utpote æqualium OK, OP, & OQ, OR differentiæ, & inde etiam rectangula PQK & PQ × PR æqualia sunt; atq; adeo rectangulum PQ × PR est ad rectangulum AQB, hoc est ad rectangulum PS × PT in data ratione.     Q.E.D.

Cas.2. Ponamus jam Trapezii latera opposita AC & BD non esse parallela. Age Bd parallelam AC & occurrentem tum rectæ ST in t, tum Conicæ sectioni in d. Junge Cd secantem PQ in r, & ipsi PQ parallelam age DM secantem Cd in M & AB in N. Jam ob similia triangula BTt, DBN, est Bt seu PQ ad Tt ut DN ad NB. Sic & Rr est ad AQ seu PS ut DM ad AN. Ergo ducendo antecedentes in antecedentes & consequentes in consequentes, ut rectangulum PQ in Rr est ad rectangulum Tt in PS, ita rectangulum NDM est ad rectangulum ANB, & (per Cas. 1) ita rectangulum QPr est ad rectangulum SPt, ac divisim ita rectangulum QPR est ad rectangulum PS × PT.     Q.E.D.

Cas.3. Ponamus deniq; lineas quatuor PQ, PR, PS, PT non esse parallelas lateribus AC, AB, sed ad ea utcunq; inclinatas. Earum vice age Pq, Pr parallelas ipsi AC; & Ps, Pt parallelas ipsi AB; & propter datos angulos triangulorum PQq, PRr, PSs, PTt, dabuntur rationes PQ ad Pq, PR ad Pr, PS ad Ps & PT ad Pt, atq; adeo rationes compositæ PQ in PR ad Pq in Pr, & PS in PT ad Ps in Pt. Sed per superius demonstrata, ratio Pq in Pr ad Ps in Pt data est: Ergo & ratio PQ in PR ad PS in PT.     Q.E.D.

Lemma XVIII.

Iisdem positis, si rectangulum ductarum ad opposita duo latera Trapezii PQ × PR sit ad rectangulum ductarum ad reliqua duo latera PS × PT in data ratione; punctum P, a quo lineæ ducuntur, tanget Conicam sectionem circa Trapezium descriptam.

Per puncta A, B, C, D & aliquod infinitorum punctorum P, puta p, concipe Conicam sectionem describi: dico punctum P hanc semper tangere. Si negas, junge AP secantem hanc Conicam sectionem alibi quam in P si fieri potest, puta in b. Ergo si ab his punctis p & b ducantur in datis angulis ad latera Trapezii rectæ pq, pr, ps, pt & bk, br, bſ, bd; erit ut bk × br ad bd × bſ ita (per Lemma XVII) pq × pr ad ps × pt & ita (per hypoth.) PQ × PR ad PS × PT. Est & propter similitudinem Trapeziorum bkAſ, PQAS, ut bk ad bſ ita PQ ad PS. Quare applicando terminos prioris propositionis ad terminos correspondentes hujus, erit br ad bd ut PR ad PT. Ergo Trapezia æquiangula Drbd, DRPT similia sunt, & eorum diagonales Db, DP propterea coincidunt. Incidit itaq; b in intersectionem rectarum AP, DP adeoq; coincidit cum puncto P. Quare punctum P, ubicunq; sumatur, incidit in assignatam Conicam sectionem.     Q.E.D.

Corol. Hinc si rectæ tres PQ, PR, PS a puncto communi P ad alias totidem positione datas rectas AB, CD, AC, singulæ ad singulas, in datis angulis ducantur, sitq; rectangulum sub duabus ductis PQ × PR ad quadratum tertii, PS quad. in data ratione: punctum P, a quibus rectæ ducuntur, locabitur in sectione Conica quæ tangit lineas AB, CD in A & C & contra. Nam coeat linea BD cum linea AC manente positione trium AB, CD, AC; dein coeat etiam linea PT cum linea PS: & rectangulum PS × PT evadet PS quad. rectæq; AB, CD quæ curvam in punctis A & B, C & D secabant, jam Curvam in punctis illis coeuntibus non amplius secare possunt sed tantum tangent.

Scholium.

Nomen Conicæ sectionis in hoc Lemmate late sumitur, ita ut sectio tam rectilinea per verticem Coni transiens, quam circularis basi parallela includatur. Nam si punctum p incidit in rectam, qua quævis ex punctis quatuor A, B, C, D junguntur, Conica sectio vertetur in geminas rectas, quarum una est recta illa in quam punctum p incidit, & altera recta qua alia duo ex punctis quatuor junguntur. Si trapezii anguli duo oppositi simul sumpti æquentur duobus rectis, & lineæ quatuor PQ, PR, PS, PT ducantur ad latera ejus vel perpendiculariter vel in angulis quibusvis æqualibus, sitq; rectangulum sub duabus ductis PS × PR æquale rectangulo sub duabus aliis PS × PT, Sectio conica evadet Circulus. Idem fiet si lineæ quatuor ducantur in angulis quibusvis & rectangulum sub duabus ductis PQ × PR sit ad rectangulum sub aliis duabus PS × PT ut rectangulum sub sinubus angulorum S, T, in quibus duæ ultimæ PS, PT ducuntur, ad rectangulum sub sinubus angulorum Q, R, in quibus duæ primæ PQ, PR ducuntur. Cæteris in casibus Locus puncti P erit aliqua trium figurarum quæ vulgo nominantur Sectiones Conicæ. Vice autem Trapezii ABCD substitui potest quadrilaterum cujus latera duo opposita se mutuo instar diagonalium decussant. Sed & e punctis quatuor A, B, C, D possunt unum vel duo abire in infinitum, eoq; pacto latera figuræ quæ ad puncta illa convergunt, evadere parallela: quo in casu sectio conica transibit per cætera puncta, & in plagas parallelarum abibit in infinitum.

Lemma XIX.

Invenire punctum P, a quo si rectæ quatuor PQ, PR, PS, PT ad alias totidem positione datas rectas AB, CD, AC, BD singulæ ad singulas in datis angulis ducantur, rectangulum sub duabus ductis, PQ × PR, sit ad rectangulum sub aliis duabus, PS × PT, in data ratione.

Lineæ AB, CD, ad quas rectæ duæ PQ, PR, unum rectangulorum continentes ducuntur, conveniant cum aliis duabus positione datis lineis in punctis A, B, C, D. Ab eorum aliquo A age rectam quamlibet AH, in qua velis punctum P reperiri. Secet ea lineas oppositas BD, CD, nimirum BD in H & CD in I, & ob datos omnes angulos figuræ, dabuntur rationes PQ ad PA & PA ad PS, adeoq; ratio PQ ad PS. Auferendo hanc a data ratione PQ × PR ad PS × PT, dabitur ratio PR ad PT, & addendo datas rationes PI ad PR, & PT ad PH dabitur ratio PI ad PH atq; adeo punctum P.     Q.E.I.

Corol.1. Hinc etiam ad Loci punctorum infinitorum P punctum quodvis D tangens duci potest. Nam chorda PD ubi puncta P ac D conveniunt, hoc est, ubi AH ducitur per punctum D, tangens evadit. Quo in casu, ultima ratio evanescentium IP & PH invenietur ut supra. Ipsi igitur AD duc parallelam CF, occurrentem BD in F, & in ea ultima ratione sectam in E, & DE tangens erit, propterea quod CF & evanescens IH parallelæ sunt, & in E & P similiter sectæ.

Corol.2. Hinc etiam Locus punctorum omnium P definiri potest. Per quodvis punctorum A, B, C, D, puta A, duc Loci tangentem AE, & per aliud quodvis punctum B duc tangenti parallelam BF occurrentem Loco in F. Invenietur autem punctum F per Lemma superius. Biseca BF in G, & acta AG diameter erit ad quam BG & FG ordinatim applicantur. Hæc AG occurrat Loco in H, & erit AH latus transversum, ad quod latus rectum est ut BGq. ad AGH. Si AG nullibi occurrit Loco, linea AH existente infinita, Locus erit Parabola & latus rectum ejus BGq. ÷ AG. Sin ea alicubi occurrit, Locus Hyperbola erit ubi puncta A & H sita sunt ad easdem partes ipsius G: & Ellipsis, ubi G intermedium est, nisi forte angulus AGB rectus sit & insuper BG quad. æquale rectangulo AGH, quo in casu circulus habebitur.

Atq; ita Problematis veterum de quatuor lineis ab Euclide incæpti & ab Apollonio continuati non calculus, sed compositio Geometrica, qualem Veteres quærebant, in hoc Corollario exhibetur.

Lemma XX.

Si parallelogrammum quodvis ASPQ angulis duobus oppositis A & P tangit sectionem quamvis Conicam in punctis A & P, & lateribus unius angulorum illorum infinite productis AQ, AS occurrit eidem sectioni Conicæ in B & C; a punctis autem occursuum B & C ad quintum quodvis sectionis Conicæ punctum D agantur rectæ duæ BD, CD occurrentes alteris duobus infinite productis parallelogrammi lateribus PS, PQ in T & R: erunt semper abscissæ laterum partes PR & PT ad invicem in data ratione. Et contra, si partes illæ abscissæ sunt ad invicem in data ratione, punctum D tanget Sectionem Conicam per puncta quatuor A, B, P, C transeuntem.

Cas.1. Jungantur BP, CP & a puncto D agantur rectæ duæ DG, DE, quarum prior DG ipsi AB parallela sit & occurrat PB, PQ, CA in H, I, G; altera DE parallela sit ipsi AC & occurrat PC, PS, AB in F, K, E: & erit (per Lemma XVII.) rectangulum DE × DF ad rectangulum DG × DH in ratione data. Sed est PQ ad DE seu IQ, ut PB ad HB, adeoq; ut PT ad DH; & vicissim PQ ad PT ut DE ad DH. Est & PR ad DF ut RC ad DC, adeoq; ut IG vel PS ad DG, & vicissim PR ad PS ut DF ad DG; & conjunctis rationibus fit rectangulum PQ × PR ad rectangulum PS × PT ut rectangulum DE × DF ad rectangulum DG × DH, atq; adeo in data ratione. Sed dantur PQ & PS & propterea ratio PR ad PT datur.     Q.E.D.

Cas.2. Quod si PR & PT ponantur in data ratione ad invicem, tunc simili ratiocinio regrediendo, sequetur esse rectangulum DE × DF ad rectangulum DG × DH in ratione data, adeoq; punctum D (per Lemma XVIII.) contingere Conicam sectionem transeuntem per puncta A, B, P, C.     Q.E.D.

Corol.1. Hinc si agatur BC secans PQ in r, & in PT capiatur Pt in ratione ad Pr quam habet PT ad PR, erit Bt Tangens Conicæ sectionis ad punctum B. Nam concipe punctum D coire cum puncto B ita ut, chorda BD evanescente, BT Tangens evadet; & CD ac BT coincident cum CB & Bt

Corol.2. Et vice versa si Bt sit Tangens, & ad quodvis Conicæ sectionis punctum D conveniant BD, CD erit PR ad PT ut Pr ad Pt. Et contra, si sit PR ad PT ut Pr ad Pt, convenient BD, CD ad Conicæ sectionis punctum aliquod D

Corol.3. Conica sectio non secat Conicam sectionem in punctis pluribus quam quatuor. Nam, si fieri potest, transeant duæ Conicæ sectiones per quinq; puncta A, B, C, D, P, easq; secet recta BD in punctis D, d, & ipsam PQ secet recta Cd in r. Ergo PR est ad PT ut Pr ad PT, hoc est, PR & Pr sibi invicem æquantur, contra Hypothesin.

Lemma XXI.

Si recta duæ mobiles & infinitæ BM, CM per data puncta B, C, ceu polos ductæ, concursu suo M describant tertiam positione datam rectam MN; & aliæ duæ infinitæ rectæ BD, CD cum prioribus duabus ad puncta illa data B, C, datos angulos MBD, MCD efficientes ducantur; dico quod hæ duæ BD, CD concursu suo D describent sectionem Conicam. Et vice versa, si rectæ BD, CD concursu suo D describant Sectionem Conicam per puncta B, C, A transeuntem, & harum concursus tunc incidit in ejus punctum aliquod A, cum alteræ duæ BM, CM coincidunt cum linea BC, punctum M continget rectam positione datam.

Nam in recta MN detur punctum N, & ubi punctum mobile M incidit in immotum N, incidat punctum mobile D in immotum P. Junge CN, BN, CP, BP, & a puncto P age rectas PT, PR occurrentes ipsis BD, CD in T & R, & facientes angulum BPT æqualem angulo BNM & angulum CPR æqualem angulo CNM. Cum ergo (ex Hypothesi) æquales sint anguli MBD, NBP, ut & anguli MCD, NCP: aufer communes NBD & MCP, & restabunt æquales NBM & PBT, NCM & PCR: adeoq; triangula NBM, PBT similia sunt, ut & triangula NCM, PCR. Quare PT est ad NM ut PB ad NB, & PR ad NM ut PC ad NC. Ergo PT & PR datam habent rationem ad NM, proindeq; datam rationem inter se, atq; adeo, per Lemma XX, punctum P (perpetuus rectarum mobilum BT & CR concursus) contingit sectionem Conicam.     Q.E.D.

Et contra, si punctum D contingit sectionem Conicam transeuntem per puncta B, C, A, & ubi rectæ BM, CM coincidunt cum recta BC, punctum illud D incidit in aliquod sectionis punctum A; ubi vero punctum D incidit successive in alia duo quævis sectionis puncta p, P, punctum mobile M incidit successive in puncta immobilia n, N: per eadem n, N agatur recta nN, & hæc erit Locus perpetuus puncti illius mobilis M. Nam, si fieri potest, versetur punctum M in linea aliqua curva. Tanget ergo punctum D sectionem Conicam per puncta quinq; C, p, P, B, A, transeuntem, ubi punctum M perpetuo tangit lineam curvam. Sed & ex jam demonstratis tanget etiam punctum D sectionem Conicam per eadem quinq; puncta C, p, P, B, A, transeuntem, ubi punctum M perpetuo tangit lineam rectam. Ergo duæ sectiones Conicæ transibunt per eadem quinq; puncta, contra Corol. 3. Lem. XX. Igitur punctum M versari in linea curva absurdum est.     Q.E.D.

Prop.XXII.Prob.XIV.

Trajectoriam per data quinq; puncta describere.

Dentur puncta quinq; A, B, C, D, P. Ab eorum aliquo A ad alia duo quævis B, C, quæ poli nominentur, age rectas AB, AC hisq; parallelas TPS, PRQ per punctum quartum P. Deinde a polis duobus B, C age per punctum quintum D infinitas duas BDT, CRD, novissime ductis TPS, PRQ (priorem priori & posteriorem posteriori) occurrentes in T & R. Deniq; de rectis PT, PR, acta recta tr ipsi TR parallela, abscinde quasvis Pt, Pr ipsis PT, PR proportionales, & si per earum terminos t, r & polos B, C actæ Bt, Cr concurrant in d, locabitur punctum illud d in Trajectoria quæsita. Nam punctum illud d (per Lem. XX) versatur in Conica Sectione per puncta quatuor A, B, P, C transeunte; & lineis Rr, Tt evanescentibus, coit punctum d cum puncto D. Transit ergo sectio Conica per puncta quinq; A, B, C, D, P.     Q.E.D.

Idem aliter.

E punctis datis junge tria quævis A, B, C, & circum duo eorum B, C ceu polos, rotando angulos magnitudine datos ABC, ACB, applicentur crura BA, CA primo ad punctum D deinde ad punctum P, & notentur puncta M, N in quibus altera crura BL, CL casu utroq; se decussant. Agatur recta infinita MN, & rotentur anguli illi mobiles circum polos suos B, C, ea lege ut crurum BL, CL vel BM, CM intersectio, quæ jam sit m, incidat semper in rectam illam infinitam MN, & crurum BA, CA, vel BD, CD intersectio, quæ jam sit d, Trajectoriam quæsitam PADdB delineabit. Nam punctum d per Lem. XXI continget sectionem Conicam per puncta B, C transeuntem & ubi punctum m accedit ad puncta L, M, N, punctum d (per constructionem) accedet ad puncta A, D, P. Describetur itaq; sectio Conica transiens per puncta quinq; A, B, C, D, P.     Q.E.F.

Corol.1. Hinc rectæ expedite duci possunt quæ trajectoriam in punctis quibusvis datis B, C tangent. In casu utrovis accedat punctum d ad punctum C & recta Cd evadet tangens quæsita.

Corol.2. Unde etiam Trajectoriarum centra, diametri & latera recta inveniri possunt, ut in Corollario secundo Lemmatis XIX.

Schol.

Constructio in casu priore evadet paulo simplicior jungendo BP, & in ea si opus est producta, capiendo Bp ad BP ut est PR ad PT, & per p agendo rectam infinitam pD ipsi SPT parallelam, inq; ea capiendo semper pD æqualem Pr, & agendo rectas BD, Cr concurrentes in d. Nam cum sint Pr ad Pt, PR ad PT, pB ad PB, pD ad Pt in eadem ratione, erunt pD & Pr semper æquales. Hac methodo puncta Trajectoriæ inveniuntur expeditissime, nisi mavis Curvam, ut in casu secundo, describere Mechanice.

Prop.XXIII.Prob.XV.

Trajectoriam describere quæ per data quatuor puncta transibit, & rectam continget positione datam.

Cas.1. Dentur tangens HB, punctum contactus B, & alia tria puncta C, D, P. Junge BC, & agendo PS parallelam BH, & PQ parallelam BC, comple parallelogrammum BSPQ. Age BD secantem SP in T, & CD secantem PQ in R. Deniq; agendo quamvis tr ipsi TR parallelam, de PQ, PS abscinde Pr, Pt ipsis PR, PT proportionales respective; & actarum Cr, Bt concursus d (per Corol. 2. Lem. XX) incidet semper in Trajectoriam describendam.

Idem aliter.

Revolvatur tum angulus magnitudine datus CBH circa polum B, tum radius quilibet rectilineus & utrinq; productus DC circa polum C. Notentur puncta M, N in quibus anguli crus BC secat radium illum ubi crus alterum BH concurrit cum eodem radio in punctis D & P. Deinde ad actam infinitam MN concurrant perpetuo radius ille CP vel CD & anguli crus CB, & cruris alterius BH concursus cum radio delineabit Trajectoriam quæsitam.

Nam si in constructionibus Problematis superioris accedat punctum A ad punctum B, lineæ CA & CB coincident, & linea AB in ultimo suo situ fiet tangens BH, atq; adeo constructiones ibi positæ evadent eædem cum constructionibus hic descriptis. Delineabit igitur cruris BH concursus cum radio sectionem Conicam per puncta C, D, P transeuntem, & rectam BH tangentem in puncto B.     Q.E.F.

Cas.2. Dentur puncta quatuor B, C, D, P extra tangentem HI sita. Junge bina BD, CP concurrentia in G, tangentiq; occurrentia in H & I. Secetur tangens in A, ita ut sit HA ad AI, ut est rectangulum sub media proportionali inter BH & HD & media proportionali inter CG & GP, ad rectangulum sub media proportionali inter PI & IC & media proportionali inter DG & GB, & erit A punctum contactus. Nam si rectæ PI parallela HX trajectoriam secet in punctis quibusvis X & Y: erit (ex Conicis) HA quad. ad AI quad. ut rectangulum XHY ad rectangulum BHD (seu rectangulum CGP ad rectangulum DGB) & rectangulum BHD ad rectangulum PIC conjunctim. Invento autem contactus puncto A, describetur Trajectoria ut in casu primo.     Q.E.F.   Capi autem potest punctum A vel inter puncta H & I, vel extra; & perinde Trajectoria dupliciter describi.

Prop.XXIV.Prob.XVI.

Trajectoriam describere quæ transibit per data tria puncta & rectas duas positione datas continget.

Dentur tangentes HI, KL & puncta B, C, D. Age BD tangentibus occurrentem in punctis H, K & CD tangentibus occurrentem in punctis I, L. Actas ita seca in R & S, ut sit HR ad KR ut est media proportionalis inter BH & HD ad mediam proportionalem inter BK & KD; & IS ad LS ut est media proportionalis inter CI & ID ad mediam proportionalem inter CL & LD. Age RS secantem tangentes in A & P, & erunt A & P puncta contactus. Nam si A & P sint Puncta contactuum ubivis in tangentibus sita, & per punctorum H, I, K, L quodvis I agatur recta IY tangenti KL parallela & occurrens curvæ in X & Y, & in ea sumatur IZ media proportionalis inter IX & IY: erit, ex Conicis, rectangulum XIY (seu IZ quad.) ad LP quad. ut rectangulum CID ad rectangulum CLD; id est (per constructionem) ut SI quad. ad SL quad. atq; adeo IZ ad LP ut SI ad SL. Jacent ergo puncta S, P, Z in una recta. Porro tangentibus concurrentibus in G, erit (ex Conicis) rectangulum XIY (seu IZ quad.) ad IA quad. ut GP quad. ad GA quad., adeoq; IZ ad IA ut GP ad GA. Jacent ergo puncta P, Z & A in una recta, adeoq; puncta S, P & A sunt in una recta. Et eodem argumento probabitur quod puncta R, P & A sunt in una recta. Jacent igitur puncta contactus A & P in recta SR. Hisce autem inventis, Trajectoria describetur ut in casu primo Problematis superioris.     Q.E.F.

Lemma XXII.

Figuras in alias ejusdem generis figuras mutare.

Transmutanda sit figura quævis HGI. Ducantur pro lubitu rectæ duæ parallelæ AO, BL tertiam quamvis positione datam AB secantes in A & B, & a figuræ puncto quovis G, ad rectam AB ducatur GD, ipsi OA parallela. Deinde a puncto aliquo O in linea OA dato ad punctum D ducatur recta OD, ipsi BL occurrens in d; & a puncto occursus erigatur recta gd, datum quemvis angulum cum recta BL continens, atq; eam habens rationem ad Od quam habet GD ad OD; & erit g punctum in figura nova hgi puncto G respondens. Eadem ratione puncta singula figuræ primæ dabunt puncta totidem figuræ novæ. Concipe igitur punctum G motu continuo percurrere puncta omnia figuræ primæ, & punctum g motu itidem continuo percurret puncta omnia figuræ novæ & eandem describet. Distinctionis gratia nominemus DG ordinatam primam, dg ordinatam novam; BD abscissam primam, Bd abscissam novam; O polum, OD radium abscindentem, OA radium ordinatum primum & Oa (quo parallelogrammum OABa completur) radium ordinatum novum.

Dico jam quod si punctum G tangit rectam lineam positione datam, punctum g tanget etiam lineam rectam positione datam. Si punctum G tangit Conicam sectionem, punctum g tanget etiam conicam sectionem. Conicis sectionibus hic circulum annumero. Porro si punctum G tangit lineam tertii ordinis Analytici, punctum g tanget lineam tertii itidem ordinis; & sic de curvis lineis superiorum ordinum: Lineæ duæ erunt ejusdem semper ordinis Analytici quas puncta G, g tangunt. Etenim ut est ad ad OA ita sunt Od ad OD, dg ad DG, & AB ad AD; adeoq; AD æqualis est OA × AB ÷ ad & DG æqualis est OA × dg ÷ ad. Jam si punctum D tangit rectam lineam, atq; adeo in æquatione quavis, qua relatio inter abscissam AD & ordinatam DG habetur, indeterminatæ illæ AD & DG ad unicam tantum dimensionem ascendunt, scribendo in hac æquatione OA × AB ÷ ad pro AD, & OA × dg ÷ ad pro DG, producetur æquatio nova, in qua abscissa nova ad & ordinata noua dg ad unicam tantum dimensionem ascendent, atq; adeo quæ designat lineam rectam. Sin AD & DG (vel earum alterutra) ascendebant ad duas dimensiones in æquatione prima, ascendent itidem ad & dg ad duas in æquatione secunda. Et sic de tribus vel pluribus dimensionibus. Indeterminatæ ad, dg in æquatione secunda & AD, DG in prima ascendent semper ad eundem dimensionum numerum, & propterea lineæ, quas puncta G, g tangunt, sunt ejusdem ordinis Analytici.

Dico præterea quod si recta aliqua tangat lineam curvam in figura prima; hæc recta translata tanget lineam curvam in figura nova: & contra.Nam si Curvæ puncta quævis duo accedunt ad invicem & coeunt in figura prima, puncta eadem translata coibunt in figura nova, atq; adeo rectæ, quibus hæc puncta junguntur simul, evadent curvarum tangentes in figura utraq;.Componi possent harum assertionum Demonstrationes more magis Geometrico.Sed brevitati consulo.

Igitur si figura rectilinea in aliam transmutanda est, sufficit rectarum intersectiones transferre, & per easdem in figura nova lineas rectas ducere. Sin curvilineam transmutare oportet, transferenda sunt puncta, tangentes & aliæ rectæ quarum ope Curva linea definitur. Inservit autem hoc Lemma solutioni difficiliorum Problematum, transmutando figuras propositas in simpliciores. Nam rectæ quævis convergentes transmutantur in parallelas, adhibendo pro radio ordinato primo AO lineam quamvis rectam, quæ per concursum convergentium transit; id adeo quia concursus ille hoc pacto abit in infinitum, lineæ autem parallelæ sunt quæ ad punctum infinite distans tendunt. Postquam autem Problema solvitur in figura nova, si per inversas operationes transmutetur hæc figura in figuram primam, habebitur Solutio quæsita.

Utile est etiam hoc Lemma in solutione Solidorum problematum.Nam quoties duæ sectiones conicæ obvenerint, quarum intersectione Problema solvi potest, transmutare licet unum earum in circulum.Recta item & sectio Conica in constructione planorum problematum vertuntur in rectam & circulum.

Prop.XXV.Prob.XVII.

Trajectoriam describere quæ per data duo puncta transibit & rectas tres continget positione datas.

Per concursum tangentium quarumvis duarum cum se invicem, & concursum tangentis tertiæ cum recta illa, quæ per puncta duo data transit, age rectam infinitam; eaq; adhibita pro radio ordinato primo, transmutetur figura, per Lemma superius, in figuram novam. In hac figura tangentes illæ duæ evadent parallelæ, & tangens tertia fiet parallela rectæ per puncta duo transeunti. Sunto hi, kl tangentes duæ parallelæ, ik tangens tertia, & hl recta huic parallela transiens per puncta illa a, b, per quæ Conica sectio in hac figura nova transire debet, & parallelogrammum hikl complens. Secentur rectæ hi, ik, kl in c, d & e, ita ut sit hc ad latus quadratum rectanguli ahb, ic ad id, & ke ad kd ut est summa rectarum hi & kl ad summam trium linearum quarum prima est recta ik, & alteræ duæ sunt latera quadrata rectangulorum ahb & alb: Et erunt c, d, e puncta contactus. Etenim, ex Conicis, sunt hc quadratum ad rectangulum ahb, & ic quadratum ad id quadratum, & ke quadratum ad kd quadratum, & el quadratum ad alb rectangulum in eadem ratione, & propterea hc ad latus quadratum ipsius ahb, ic ad id, ke ad kd & el ad latus quadratum ipsius alb sunt in dimidiata illa ratione, & composite, in data ratione omnium antecedentium hi & kl ad omnes consequentes, quæ sunt latus quadratum rectanguli ahb & recta ik & latus quadratum rectanguli alb. Habentur igitur ex data illa ratione puncta contactus c, d, e, in figura nova.   Per inversas operationes Lemmatis novissimi transferantur hæc puncta in figuram primam & ibi, per casum primum Problematis XIV, describetur Trajectoria.     Q.E.F.   Cæterum perinde ut puncta a, b jacent vel inter puncta h, l, vel extra, debent puncta c, d, e vel inter puncta h, i, k, l capi, vel extra. Si punctorum a, b alterutrum cadit inter puncta h, l, & alterum extra, Problema impossibile est.

Prop.XXVI.Prob.XVIII.

Trajectoriam describere quæ transibit per punctum datum & rectas quatuor positione datas continget.

Ab intersectione communi duarum quarumlibet tangentium ad intersectionem communem reliquarum duarum agatur recta infinita, & eadem pro radio ordinato primo adhibita, transmutetur figura (per Lem. XXII) in figuram novam, & Tangentes binæ, quæ ad radium ordinatum concurrebant, jam evadent parallelæ. Sunto illæ hi & kl, ik & hl continentes parallelogrammum hikl. Sitq; p punctum in hac nova figura, puncto in figura prima dato respondens. Per figuræ centrum O agatur pq, & existente Oq æquali Op erit q punctum alterum per quod sectio Conica in hac figura nova transire debet.   Per Lemmatis XXII operationem inversam transferatur hoc punctum in figuram primam, & ibi habebuntur puncta duo per quæ Trajectoria describenda est.   Per eadem vero describi potest Trajectoria illa per Prob.   XVII.     Q.E.F.

Lemma XXIII.

Si rectæ duæ positione datæ AC, BD ad data puncta A, B terminentur, datamq; habeant rationem ad invicem, & recta CD, qua puncta indeterminata C, D junguntur secetur in ratione data in K: dico quod punctum K locabitur in recta positione data.

Concurrant enim rectæ AC, BD in E, & in BE capiatur BG ad AE ut est BD ad AC, sitq; FD æqualis EG, & erit EC ad GD, hoc est ad EF ut AC ad BD, adeoq; in ratione data, & propterea dabitur specie triangulum EFC. Secetur CF in L in ratione CK ad CD, & dabitur etiam specie triangulum EFL, proindeq; punctum L locabitur in recta EL positione data. Junge LK, & ob datam FD & datam rationem LK ad FD, dabitur LK. Huic æqualis capiatur EH, & erit ELKH parallelogrammum. Locatur igitur punctum K in parallelogrammi latere positione dato HK.     Q.E.D.

Lemma XXIV.

Si rectæ tres tangant quamcunq; conisectionem, quarum duæ parallelæ sint ac dentur positione; dico quod sectionis semidiameter hisce duabus parallela, sit media proportionalis inter harum segmenta, punctis contactum & tangenti tertiæ interjecta.

Sunto AF, GB parallelæ duæ Conisectionem ADB tangentes in A & B; EF recta tertia Conisectionem tangens in I, & occurrens prioribus tangentibus in F & G; sitq; CD semidiameter Figuræ tangentibus parallela: Dico quod AF, CD, BG sunt continue proportionales.

Nam si diametri conjugatæ AB, DM tangenti FG occurrant in E & H, seq; mutuo secent in C, & compleatur parallelogrammum IKCL; erit ex natura sectionum Conicarum, ut EC ad CA ita CA ad LC, & ita divisim EC - CA ad CA - CL seu EA ad AL, & composite EA ad EA + AL seu EL ut EC ad EC + CA seu EB; adeoq; (ob similitudinem triangulorum EAF, ELI, ECH, EBG) AF ad LI ut CH ad BG. Est itidem ex natura sectionum Conicarum LI seu CK ad CD ut CD ad CH atq; adeo ex æquo perturbate AF ad CD ut CD ad BG.     Q.E.D.

Corol.1. Hinc si tangentes duæ FG, PQ tangentibus parallelis AF, BG occurrant in F & G, P & Q, seq; mutuo secent in O, erit (ex æquo perturbate) AF ad BQ ut AP ad BG, & divisim ut FP ad GQ, atq; adeo ut FO ad OG

Corol.2. Unde etiam rectæ duæ PG, FQ per puncta P & G, F & Q ductæ, concurrent ad rectam ACB per centrum figuræ & puncta contactuum A, B transeuntem.

Lemma XXV.

Si parallelogrammi latera quattuor infinite producta tangant sectionem quamcunq; Conicam & abscindantur ad tangentem quamvis quintam; sumantur autem abscisse terminate ad angulos oppositos parallelogrammi: dico quod abscissa unius lateris ad latus illud, ut pars lateris contermini inter punctum contactus & latus tertium, ad abscissam lateris hujus contermini.

Tangant parallelogrammi MIKL latera quatuor ML, IK, KL, MI sectionem Conicam in A, B, C, D, & secet tangens quinta FQ hæc latera in F, Q, H & E: dico quod sit ME ad MI ut BK ad KQ & KH ad KL ut AM ad MF. Nam per Corollarium Lemmatis superioris, est ME ad EI ut AM seu BK ad BQ, & componendo ME ad MI ut BK ad KQ. Q. E. D. Item KH ad HL ut BK seu AM ad AF, & dividendo KH ad KL ut AM ad MF.     Q.E.D.

Corol.1. Hinc si parallelogrammum IKLM datur, dabitur rectangulum KQ × ME, ut & huic æquale rectangulum KH × MF. Æquantur enim rectangula illa ob similitudinem triangulorum KQH, MFE

Corol.2. Et si sexta ducatur tangens eq tangentibus KI, MI occurrens in e & q, rectangulum KQ × ME æquabitur rectangulo Kq × Me, eritq; KQ ad Me ut Kq ad ME, & divisim ut Qq ad Ee

Corol.3. Unde etiam si Eq, eQ jungantur & bisecentur, & recta per puncta bisectionum agatur, transibit hæc per centrum Sectionis Conicæ. Nam cum sit Qq ad Ee ut KQ ad Me, transibit eadem recta per medium omnium Eq, eQ, MK; (per Lemma XXIII) & medium rectæ MK est centrum Sectionis.

Prop.XXVII.Prob.XIX.

Trajectoriam describere quæ rectas quinq; positione datas continget.

Dentur positione tangentes ABG, BCF, GCD, FDE, EA. Figuræ quadrilateræ sub quatuor quibusvis contentæ ABFE diagonales AF, BE biseca, & (per Cor. 3. Lem. XXV) recta per puncta bisectionum acta transibit per centrum Trajectoriæ. Rursus figuræ quadrilateræ BGDF, sub alijs quibusvis quatuor tangentibus contentæ, diagonales (ut ita dicam) BD, GF biseca, & recta per puncta bisectionum acta transibit per centrum sectionis. Dabitur ergo centrum in concursu bisecantium. Sit illud O. Tangenti cuivis BC parallelam age KL, ad eam distantiam ut centrum O in medio inter parallelas locetur, & acta KL tanget trajectoriam describendam. Secet hæc tangentes alias quasvis duas CD, FDE in L & K. Per tangentium non parallelarum CL, FK cum parallelis CF, KL concursus C & K, F & L age CK, FL concurrentes in R, & recta OR ducta & producta secabit tangentes parallelas CF, KL in punctis contactuum.   Patet hoc per Corol.   2.   Lem.   XXIV.   Eadem methodo invenire licet alia contactuum puncta, & tum demum per Casum 1.   Prob.   XIV.   Trajectoriam describere.     Q.E.F.

Schol.

Problemata, ubi dantur Trajectoriarum vel centra vel Asymptoti includuntur in præcedentibus.Nam datis punctis & tangentibus una cum centro, dantur alia totidem puncta aliæq; tangentes a centro ex altera ejus parte æqualiter distantes.Asymptotos autem pro tangente habenda est, & ejus terminus infinite distans (si ita loqui fas sit) pro puncto contactus.Concipe tangentis cujusvis punctum contactus abire in infinitum, & tangens vertetur in Asymptoton, atq; constructiones Problematis XV & Casus primi Problematis XIV vertentur in constructiones Problematum ubi Asymptoti dantur.

Postquam Trajectoria descripta est, invenire licet axes & umbilicos ejus hac methodo. In constructione & Figura Lemmatis XXI, fac ut angulorum mobilium PBN, PCN crura BP, CP quorum concursu Trajectoria describebatur sint sibi invicem parallela, eumq; servantia situm revolvantur circa polos suos B, C in figura illa. Interea vero describant altera angulorum illorum crura CN, BN concursu suo K vel k, circulum IBKGC. Sit circuli hujus centrum O. Ab hoc centro ad Regulam MN, ad quam altera illa crura CN, BN interea concurrebant dum Trajectoria describebatur, demitte normalem OH circulo occurrentem in K & L. Et ubi crura illa altera CK, BK concurrant ad punctum istud K quod Regulæ proprius est, crura prima CP, BP parallela erunt axi majori & perpendicularia minori; & contrarium eveniet si crura eadem concurrunt ad punctum remotius LUnde si detur Trajectoriæ centrum, dabuntur axes.Hisce autem datis, umbilici sunt in promptu.

 

Axium vero quadrata sunt ad invicem ut KH ad LH, & inde facile est Trajectoriam specie datam per data quatuor puncta describere. Nam si duo ex punctis datis constituantur poli C, B, tertium dabit angulos mobiles PCK, PBK. Tum ob datam specie Trajectoriam, dabitur ratio OH ad OK, centroq; O & intervallo OH describendo circulum, & per punctum quartum agendo rectam quæ circulum illum tangat, dabitur regula MN cujus ope Trajectoria describatur. Unde etiam vicissim Trapezium specie datum (si casus quidam impossibiles excipiantur) in data quavis sectione Conica inscribi potest.

 

Sunt & alia Lemmata quorum ope Trajectoriæ specie datæ, datis punctis & tangentibus, describi possunt.Ejus generis est quod, si recta linea per punctum quodvis positione datum ducatur, quæ datam Conisectionem in punctis duobus intersecet, & intersectionum intervallum bisecetur, punctum bisectionis tanget aliam Conisectionem ejusdem speciei cum priore, atq; axes habentem prioris axibus parallelos.Sed propero ad magis utilia.

Lemma XXVI.

Trianguli specie & magnitudine dati tres angulos ad rectas totidem positione datas, quæ non sunt omnes parallelæ, singulos ad singulas ponere.

Dantur positione tres rectæ infinitæ AB, AC, BC, & oportet triangulum DEF ita locare, ut angulus ejus D lineam AB, angulus E lineam AC, & angulus F lineam BC tangat. Super DE, DF & EF describe tria circulorum segmenta DRE, DGF, EMF, quæ capiant angulos angulis BAC, ABC, ACB æquales respective. Describantur autem hæc segmenta ad eas partes linearum DE, DF, EF ut literæ DRED eodem ordine cum literis BACB, literæ DGFD eodem cum literis ABCA, & literæ EMFE eodem cum literis ACBA in orbem redeant: deinde compleantur hæc segmenta in circulos. Secent circuli duo priores se mutuo in G, sintq; centra eorum P & Q. Junctis GP, PQ, cape Ga ad AB ut est GP ad PQ, & centro G, intervallo Ga describe circulum, qui secet circulum primum DGE in a. Jungatur tum aD secans circulum secundum DFG in b, tum aE secans circulum tertium GEc in c. Et compleatur figura ABCdef similis & æqualis figuræ abcDEFDico factum.

Agatur enim Fc ipsi aD occurrens in n. Jungantur aG, bG, PD, QD & producatur PQ ad R. Ex constructione est angulus EaD æqualis angulo CAB, & angulus EcF æqualis angulo ACB, adeoq; triangulum anc triangulo ABC æquiangulum. Ergo angulus anc seu FnD angulo ABC, adeoq; angulo FbD æqualis est, & propterea punctum n incidit in punctum b. Porro angulus GPQ, qui dimidius est anguli ad centrum GPD, æqualis est angulo ad circumferentiam GaD; & angulus GQR, qui dimidius est complementi anguli ad centrum GQD, æqualis est angulo ad circumferentiam GbD, adeoq; eorum complementa PQG, abG æquantur, suntq; ideo triangula GPQ, Gab similia, & Ga est ad ab ut GP ad PQ; id est (ex constructione) ut Ga ad AB. Æquantur itaq; ab & AB, & propterea triangula abc, ABC, quæ modo similia esse probavimus, sunt etiam æqualia. Unde cum tangant insuper trianguli DEF anguli D, E, F trianguli abc latera ab, ac, bc respective, compleri potest figura ABCdef figuræ abcDEF similis & æqualis, atq; eam complendo solvetur Problema.     Q.E.F.

Corol. Hinc recta duci potest cujus partes longitudine datæ rectis tribus positione datis interjacebunt. Concipe Triangulum DEF, puncto D ad latus EF accedente, & lateribus DE, DF in directum positis, mutari in lineam rectam, cujus pars data DE, rectis positione datis AB, AC, & pars data DF rectis positione datis AB, BC interponi debet; & applicando constructionem præcedentem ad hunc casum solvetur Problema.

Prop.XXVIII.Prob.XX.

Trajectoriam specie & magnitudine datam describere, cujus partes datæ rectis tribus positione datis interjacebunt.

Describenda sit Trajectoria quæ sit similis & æqualis lineæ curvæ DEF, quæq; a rectis tribus AB, AC, BC positione datis, in partes datis hujus partibus DE & EF similes & æquales secabitur.

Age rectas DE, EF, DF, & trianguli hujus DEF pone angulos D, E, F ad rectas illas positione datas: (per Lem. XXVI) Dein circa triangulum describe Trajectoriam curvæ DEF similem & æqualem.     Q.E.F.

Lemma XXVII.

Trapezium specie datum describere cujus anguli ad rectas quatuor positione datas (quæ neq; omnes parallelæ sunt, neq; ad commune punctum convergunt) singuli ad singulas consistent.

Dentur positione rectæ quatuor ABC, AD, BD, CE, quarum prima secet secundam in A, tertiam in B, & quartam in C: & describendum sit Trapezium fghi quod sit Trapezio FGHI simile, & cujus angulus f, angulo dato F æqualis, tangat rectam ABC cæteriq; anguli g, h, i cæteris angulis datis G, H, I æquales tangant cæteras lineas AD, BD, CE respective. Jungatur FH, & super FG, FH, FI describantur totidem circulorum segmenta FSG, FTH, FVI; quorum primum FSG capiat angulum æqualem angulo BAD, secundum FTH capiat angulum æqualem angulo CBE; ac tertium FVI capiat angulum æqualem angulo ACE. Describi autem debent segmenta ad eas partes linearum FG, FH, FI, ut literarum FSGF idem sit ordo circularis qui literarum BADB, utq; literæ FTHF eodem ordine cum literis CBEC, & literæ FVIF eodem cum literis ACEA in orbem redeant. Compleantur segmenta in circulos, sitq; P centrum circuli primi FSG, & Q centrum secundi FTH. Jungatur & utrinq; producatur PQ, & in ea capiatur QR in ea ratione ad PQ quam habet BC ad AB. Capiatur autem QR ad eas partes puncti Q ut literarum P, Q, R idem sit ordo circularis atq; literarum A, B, C: centroq; R & intervallo RF describatur circulus quartus FNc secans circulum tertium FVI in c. Jungatur Fc secans circulum primum in a & secundum in b. Agantur aG, bH, cI, & figuræ abcFGHI similis constituatur figura ABCfghi: Eritq; Trapezium fghi illud ipsum quod constituere oportuit.

Secent enim circuli duo primi FSG, FTH se mutuo in K. Jungantur PK, QK, RK, aK, bK, cK & producatur QP ad L. Anguli ad circumferentias FaK, FbK, FcK, sunt semisses angulorum FPK, FQK, FRK ad centra, adeoq; angulorum illorum dimidiis LPK, LQK, LRK æquales. Est ergo figura PQRK figuræ abcK æquiangula & similis, & propterea ab est ad bc ut PQ ad QR, id est ut AB ad BC. Angulis insuper FaG, FbH, FcI æquantur fAg, fBh, fCi per constructionem. Ergo figuræ abcFGHI figura similis ABCfghi compleri potest. Quo facto Trapezium fghi constituetur simile Trapezio FGHI & angulis suis f, g, h, i tanget rectas AB, AD, BD, CE.     Q.E.F.

Corol. Hinc recta duci potest cujus partes, rectis quatuor positione datis dato ordine interjectæ, datam habebunt proportionem ad invicem. Augeantur anguli FGH, GHI usq; eo, ut rectæ FG, GH, HI in directum jaceant, & in hoc casu construendo Problema, ducetur recta fghi cujus partes fg, gh, hi, rectis quatuor positione datis AB & AD, AD & BD, BD & CE interjectæ, erunt ad invicem ut lineæ FG, GH, HI, eundemq; servabunt ordinem inter se. Idem vero sic fit expeditius.

Producantur AB ad K, & BD ad L, ut sit BK ad AB ut HI ad GH; & DL ad BD ut GI ad FG; & jungatur KL occurrens rectæ CE in i. Producatur iL ad M, ut sit LM ad iL ut GH ad HI, & agatur tum MQ ipsi LB parallela rectæq; AD occurrens in g, tum gi secans AB, BD in f, hDico factum.

Secet enim Mg rectam AB in Q, & AD rectam KL in S, & agatur AP, quæ sit ipsi BD parallela & occurrat iL in P, & erunt Mg ad Lh (Mi ad Li, gi ad hi, AK ad BK) & AP ad BL in eadem ratione. Secetur DL in R ut sit DL ad RL in eadem illa ratione, & ob proportionales gS ad gM, AS ad AP & DS ad DL, erit ex æquo ut gS ad Lh ita AS ad BL & DS ad RL; & mixtim, BL - RL ad Lh - BL ut AS - DS ad gS - AS. Id est BR ad Bh ut AD ad Ag, adeoq; ut BD ad gQ. Et vicissim BR ad BD ut Bh ad gQ seu fh ad fg. Sed ex constructione est BR ad BD ut FH ad FG. Ergo fh est ad fg ut FH ad FG. Cum igitur sit etiam ig ad ih ut Mi ad Li, id est, ut IG ad IH, patet lineas FI, fi in g & h, G & H similiter sectas esse.     Q.E.F.

In constructione Corollarii hujus postquam ducitur LK secans CE in i, producere licet iE ad V, ut sit EV ad iE ut FH ad HI, & agere Vf parallelam ipsi BD. Eodem recidit si centro i, intervallo IH describatur circulus secans BD in X, producatur iX ad Y, ut sit iY æqualis IF, & agatur Yf ipsi BD parallela.

Prop.XXIX.Prob.XIX.

Trajectoriam specie datam describere, quæ a rectis quatuor positione datis in partes secabitur, ordine, specie & proportione datas.

Describenda sit Trajectoria fghi, quæ similis sit lineæ curvæ FGHI, & cujus partes fg, gh, hi illius partibus FG, GH, HI similes & proportionales, rectis AB & AD, AD & BD, BD & EC positione datis, prima primis, secunda secundis, tertia tertiis interjaceant. Actis rectis FG, GH, HI, FI, describatur Trapezium fghi quod sit Trapezio FGHI simile & cujus anguli f, g, h, i tangant rectas illas positione datas AB, AD, BD, CE singuli singulas dicto ordine. Dein (per Lem. XXVII) circa hoc Trapezium describatur Trajectoria curvæ lineæ FGHI consimilis.

Scholium.

Construi etiam potest hoc Problema ut sequitur. Junctis FG, GH, HI, FI produc GF ad V, jungeq; FH, IG, & angulis FGH, VFH fac angulos CAK, DAL æquales. Concurrant AK, AL cum recta BD in K & L, & inde aguntur KM, LN, quarum KM constituat angulum AKM æqualem angulo GHI, sitq; ad AK ut est HI ad GH; & LN constituat angulum ALN æqualem angulo FHI, sitq; ad AL ut HI ad FH. Ducantur autem AK, KM, AL, LN ad eas partes linearum AD, AK, AL, ut literæ CAKMC, ALK, DALND eodem ordine cum literis FGHIF in orbem redeant, & acta MN occurrat rectæ CE in i. Fac angulum iEP æqualem angulo IGF, sitq; PE ad Ei ut FG ad GI; & per P agatur QPf, quæ cum recta AED contineat angulum PQE æqualem angulo FIG, rectæq; AB occurrat in f, & jungatur fi. Agantur autem PE & PQ ad eas partes linearum CE, PE, ut literarum PEiP & PEQP idem sit ordo circularis qui literarum FGHIF, & si super linea fi eodem quoq; literarum ordine constituatur Trapezium fghi Trapezio FGHI simile, & circumscribatur Trajectoria specie data, solvetur Problema.

Hactenus de orbibus inveniendis.Superest ut motus corporum orbibus inventis determinemus.



SECT.VI.

De inventione motuum in Orbibus datis.

Prop.XXX.Prob.XXII.

Corporis in data Trajectoria Parabolica moventis, invenire locum ad tempus assignatum.

Sit S umbilicus & A vertex principalis Parabolæ, sitq; 4AS × M area Parabolica APS, quæ radio SP, vel post excessum corporis de vertice descripta fuit, vel ante appulsum ejus ad verticem describenda est. Innotescit area illa ex tempore ipsi proportionali. Biseca AS in G, erigeq; perpendiculum GH æquale 3M, & circulus centro H, intervallo HS descriptus secabit Parabolam in loco quæsito P. Nam demissa ad axem perpendiculari PO, est HGq. + GSq. (= HSq. = HPq. = GOq. + PO - HGq.) = GOq. + HGq. - 2HG × PO + POq. Et deleto utrinq; HGq. fiet GSq. = GOq. - 2HG × PO + POq. seu 2HG × PO (= GOq. + POq. - GSq. = AOq. - 2GAO + POq.) = AOq. + ¾POq. Pro AOq. scribe AO × POq. ÷ 4AS, & applicatis terminis omnibus ad 3PO, ductisq; in 2AS, fiet 4/3GH × AS (= 1/6AO × PO + ½AS × PO = {AO + 3AS} ÷ 6 × PO = {4AO - 3SO} ÷ 6 × PO = areæ APO - SPO) = areæ APS. Sed GH erat 3M, & inde 4/3HG × AS est 4AS × M. Ergo area APS æqualis est 4AS × M.     Q.E.D.

Corol.1. Hinc GH est ad AS, ut tempus quo corpus descripsit arcum AP ad tempus quo corpus descripsit arcum inter verticem A & perpendiculum ad axem ab umbilico S erectum.

Corol.2. Et circulo ASP per corpus movens perpetuo transeunte, velocitas puncti H est ad velocitatem quam corpus habuit in vertice A, ut 3 ad 8; adeoq; in ea etiam ratione est linea GH ad lineam rectam quam corpus tempore motus sui ab A ad P, ea cum velocitate quam habuit in vertice A, describere posset.

Corol.3. Hinc etiam viceversa inveniri potest tempus quo corpus descripsit arcum quemvis assignatum AP. Junge AP & ad medium ejus punctum erige perpendiculum rectæ GH occurrens in H

Lemma XXVIII.

Nulla extat figura Ovalis cujus area, rectis pro lubitu abscissa, possit per æquationes numero terminorum ac dimensionum finitas generaliter inveniri.

Intra Ovalem detur punctum quodvis, circa quod ceu polum revolvatur perpetuo linea recta, & interea in recta illa exeat punctum mobile de polo, pergatq; semper ea cum velocitate, quæ sit ut rectæ illius intra Ovalem longitudo. Hoc motu punctum illud describet Spiralem gyris infinitis. Jam si area Oualis per finitam æquationem inveniri potest, invenietur etiam per eandem æquationem distantia puncti a polo; quæ huic areæ proportionalis est, adeoq; omnia Spiralis puncta per æquationem finitam inveniri possunt: & propterea rectæ cujusvis positione datæ intersectio cum spirali inveniri etiam potest per æquationem finitam. Atqui recta omnis infinite producta spiralem secat in punctis numero infinitis, & æquatio, qua intersectio aliqua duarum linearum invenitur, exhibet earum intersectiones omnes radicibus totidem, adeoq; ascendit ad tot dimensiones quot sunt intersectiones. Quoniam circuli duo se mutuo secant in punctis duobus, intersectio una non invenitur nisi per æquationem duarum dimensionum, qua intersectio altera etiam inveniatur. Quoniam duarum sectionum Conicarum quatuor esse possunt intersectiones, non potest aliqua earum generaliter inveniri nisi per æquationem quatuor dimensionum, qua omnes simul inveniantur. Nam si intersectiones illæ seorsim quærantur, quoniam eadem est omnium lex & conditio, idem erit calculus in casu unoquoq; & propterea eadem semper conclusio, quæ igitur debet omnes intersectiones simul complecti & indifferenter exhibere. Unde etiam intersectiones Sectionum Conicarum & curvarum tertiæ potestatis, eo quod sex esse possunt, simul prodeunt per æquationes sex dimensionum, & intersectiones duarum curvarum tertiæ potestatis, quia novem esse possunt, simul prodeunt per æquationes dimensionum novem. Id nisi necessario fieret, reducere liceret Problemata omnia Solida ad Plana, & plusquam solida ad solida. Eadem de causa intersectiones binæ rectarum & sectionum Conicarum prodeunt semper per æquationes duarum dimensionum; ternæ rectarum & curvarum tertiæ potestatis per æquationes trium, quaternæ rectarum & curvarum quartæ potestatis per æquationes dimensionum quatuor, & sic in infinitum. Ergo intersectiones numero infinitæ rectarum, propterea quod omnium eadem est lex & idem calculus, requirunt æquationes numero dimensionum & radicum infinitas, quibus omnes possunt simul exhiberi. Si a polo in rectam illam secantem demittatur perpendiculum, & perpendiculum una cum secante revolvatur circa polum, intersectiones spiralis transibunt in se mutuo, quæq; prima erat seu proxima, post unam revolutionem secunda erit, post duas tertia, & sic deinceps: nec interea mutabitur æquatio nisi pro mutata magnitudine quantitatum per quas positio secantis determinatur. Unde cum quantitates illæ post singulas revolutiones redeunt ad magnitudines primas, æquatio redibit ad formam primam, adeoq; una eademq; exhibebit intersectiones omnes, & propterea radices habebit numero infinitas, quibus omnes exhiberi possunt.Nequit ergo intersectio rectæ & spiralis per æquationem finitam generaliter inveniri, & idcirco nulla extat Ovalis cujus area, rectis imperatis abscissa, possit per talem æquationem generaliter exhiberi.

Eodem argumento, si intervallum poli & puncti, quo spiralis describitur, capiatur Ovalis perimetro abscissæ proportionale, probari potest quod longitudo perimetri nequit per finitam æquationem generaliter exhiberi.

Corollarium.

Hinc area Ellipseos, quæ radio ab umbilico ad corpus mobile ducto describitur, non prodit ex dato tempore, per æquationem finitam; & propterea per descriptionem Curuarum Geometrice rationalium determinari nequit.Curvas Geometrice rationales appello quarum puncta omnia per longitudines æquationibus definitas, id est, per longitudinum rationes complicatas, determinari possunt; cæterasq; (ut Spirales, Quadratrices, Trochoides) Geometrice irrationales.Nam longitudines quæ sunt vel non sunt ut numerus ad numerum (quemadmodum in decimo Elementorum) sunt Arithmetice rationales vel irrationales.Aream igitur Ellipseos tempori proportionalem abscindo per Curvam Geometrice irrationalem ut sequitur.

Prop.XXXI.Prob.XXIII.

Corporis in data Trajectoria Elliptica moventis invenire locum ad tempus assignatum.

Ellipseos APB sit A vertex principalis, S umbilicus, O centrum, sitq; P corporis locus inveniendus. Produc OA ad G ut sit OG ad OA ut OA ad OS. Erige perpendiculum GH, centroq; O & intervallo OG describe circulum EFG, & super regula GH, ceu fundo, progrediatur rota GEF revolvendo circa axem suum, & interea puncto suo A describendo Trochoidem ALI. Quo facto, cape GK in ratione ad rotæ perimetrum GEFG, ut est tempus quo corpus progrediendo ab A descripsit arcum AP, ad tempus revolutionis unius in Ellipsi. Erigatur perpendiculum KL occurrens Trochoidi in L, & acta LP ipsi KG parallela occurret Ellipsi in corporis loco quæsito P

Nam centro O intervallo OA describatur semicirculus AQB, & arcui AQ occurrat LP producta in Q, junganturq; SQ, OQ. Arcui EFG occurrat OQ in F, & in eandem OQ demittatur perpendiculum SR. Area APS est ut area AQS, id est, ut differentia inter sectorem OQA & triangulum OQS, sive ut differentia rectangulorum ½Q × AQ & ½OQ × SR, hoc est, ob datam ½OQ, ut differentia inter arcum AQ & rectam SR, adeoq; (ob æqualitatem rationum SR ad sinum arcus AQ, OS ad OA, OA ad OG, AQ ad GF, & divisim AQ - SR ad GF - sin. arc. AQ) ut GK differentia inter arcum GF & sinum arcus AQ.     Q.E.D.

Scholium.

Cæterum ob difficultatem describendi hanc curvam præstat constructiones vero proximas in praxi Mechanica adhibere. Ellipseos cujusvis APB sit AB axis major, O centrum, S umbilicus, OD semiaxis minor, & AK dimidium lateris recti. Secetur AS in G, ut sit AG ad AS ut BO ad BS; & quæratur longitudo L, quæ sit ad ½GK ut est AO quad. ad rectangulum AS × OD. Bisecetur OG in C, centroq; C & intervallo CG describatur semicirculus GFO. Deniq; capiatur angulus GCF in ea ratione ad angulos quatuor rectos, quam habet tempus datum, quo corpus descripsit arcum quæsitum AP, ad tempus periodicum seu revolutionis unius in Ellipsi: Ad AO demittatur normalis FE, & producatur eadem versus F ad usq; N, ut sit EN ad longitudinem L, ut anguli illius sinus EF ad radium CF; centroq; N & intervallo AN descriptus circulus secabit Ellipsin in corporis loco quæsito P quam proxime.

Nam completo dimidio temporis periodici, corpus P semper reperietur in Apside summa B, & completo altero temporis dimidio, redibit ad Apsidem imam, ut oportet. Ubi vero proxime abest ab Apsidibus, ratio prima nascentium sectorum ASP, GCF, & ratio ultima evanescentium BSP & OCF, eadem est rationi Ellipseos totius ad circulum totum. Nam punctis P, F & N incidentibus in loca p, f & n axi AB quam proximis; ob æquales An, pn, recta nq, quæ ad arcum Ap perpendicularis est, adeoq; concurrit cum axe in puncto K, bisecat arcum ApProinde est ½Ap ad Gn ut AK ad GK, & Ap ad Gn ut 2AK ad GK. Est & Gn ad Gf ut EN ad EF, seu L ad CF, id est, ut {GK × AOq.} ÷ {2AS × OD} ad CF, seu GK × AOq. ad 2AS × OD × CF, & ex æquo Ap ad Gf ut 2AK ad GK + GK × AOq. ad 2AS × OD × CF, id est, ut AK × AOq. ad AS × OD × CF, hoc est, ob æqualia AK × AO × ODq. ut AO × OD ad AS × CF. Proinde Ap × ½AS est ad Gf × ½GC ut AO × OD × AS ad AS × CF × GC, seu AO × OD ad CGq. id est, sector nascens ASp ad sectorem nascentem GCf ut AO × OD ad CGq. & propterea ut area Ellipseos totius ad aream circuli totius.     Q.E.D.   Argumento prolixiore probari potest analogia ultima in Sectoribus evanescentibus BSP, OCF: ideoq; locus puncti P prope Apsides satis accurate inventus est. In quadraturis error quasi quingentesimæ partis areæ Ellipseos totius vel paulo major obvenire solet: qui tamen propemodum evanescet per ulteriorem Constructionem sequentem.

Per puncta G, O, duc arcum circularem GTO justæ magnitudinis; dein produc EF hinc inde ad T & N ut sit EN ad FT ut ½L ad CF; centroq; N & intervallo AN describe circulum qui secet Ellipsin in P, ut supra. Arcus autem GTO determinabitur quærendo ejus punctum aliquod T; quod constructionem in illo casu accuratam reddet.

Si Ellipseos latus transversum multo majus sit quam latus rectum, & motus corporis prope verticem Ellipseos desideretur, (qui casus in Theoria Cometarum incidit,) educere licet e puncto G rectam GI axi AB perpendicularem, & in ea ratione ad GK quam habet area AVPS ad rectangulum AK × AS; dein centro I & intervallo AI circulum describere. Hic enim secabit Ellipsim in corporis loco quæsito P quamproxime. Et eadem constructione (mutatis mutandis) conficitur Problema in Hyperbola. Hæ autem constructiones demonstrantur ut supra, & si Figura (vertice ulteriore B in infinitum abeunte) vertatur in Parabolam, migrant in accuratam illam constructionem Problematis XXII.

Si quando locus ille P accuratius determinandus sit, inveniatur tum angulus quidam B, qui sit ad angulum graduum 57,29578 quem arcus radio æqualis subtendit, ut est umbilicorum distantia SH ad Ellipseos diametrum AB; tum etiam longitudo quædam L, quæ sit ad radium in eadem ratione inverse. Quibus semel inventis, Problema deinceps confit per sequentem Analysin. Per constructionem superiorem (vel utcunq; conjecturam faciendo) cognoscatur corporis locus P quam proxime. Demissaq; ad axem Ellipseos ordinatim applicata PR, ex proportione diametrorum Ellipseos, dabitur circuli circumscripti AQB ordinatim applicata RQ, quæ sinus est anguli ACQ existente AC radio. Sufficit angulum illum rudi calculo in numeris proximis invenire. Cognoscatur etiam angulus tempori proportionalis, id est, qui sit ad quatuor rectos ut est tempus quo corpus descripsit arcum AP, ad tempus revolutionis unius in Ellipsi. Sit angulus iste N. Tum capiatur & angulus D ad angulum B, ut est sinus iste anguli ACQ ad Radium, & angulus E ad angulum N - ACQ + D, ut est longitudo L ad longitudinem eandem L cosinu anguli ACQ + ½D diminutam, ubi angulus iste recto minor est, auctam ubi major. Postea capiatur tum angulus F ad angulum B, ut est sinus anguli ACQ + E ad radium, tum angulus G ad angulum N - ACQ - E + F ut est longitudo L ad Longitudinem eandem cosinu anguli ACQ + E + ½F diminutam ubi angulus iste recto minor est, auctam ubi major. Tertia vice capiatur angulus H ad angulum B, ut est sinus anguli ACQ + E + G ad radium; & angulus I ad angulum N - ACQ - E - G + H, ut est longitudo L ad eandem longitudinem cosinu anguli ACQ + E + G + ½H diminutam, ubi angulus iste recto minor est, auctam ubi major. Et sic pergere licet in infinitum. Deniq; capiatur angulus ACq æqualis angulo ACQ + E + G + I &c. & ex cosinu ejus Cr & ordinata pr, quæ est ab sinum qr ut Ellipseos axis minor ad axem majorem, habebitur corporis locus correctus p. Siquando angulus N - ACQ + D negativus est, debet signum + ipsius E ubiq; mutari in -, & signum - in +. Idem intelligendum est de signis ipsorum G & I, ubi anguli N - ACQ - E + F, & N - ACQ - E - G + H negative prodeunt. Convergit autem series infinita ACQ + E + G + I quam celerrime, adeo ut vix unquam opus fuerit ultra progredi quam ad terminum secundum E. Et fundatur calculus in hoc Theoremate, quod area APS sit ut differentia inter arcum AQ & rectam ab umbilico S in Radium CQ perpendiculariter demissam.

Non dissimili calculo conficitur Problema in Hyperbola. Sit ejus centrum C, Vertex A, Umbilicus S & Asymptotos CK. Cognoscatur quantitas areæ APS tempori proportionalis. Sit ea A, & fiat conjectura de positione rectæ SP, quæ aream illam abscindat quamproxime. Jungatur CP, & ab A & P ad Asymptoton agantur AI, PK Asymptoto alteri parallelæ, & per Tabulam Logarithmorum dabitur Area AIKP, eiq; æqualis area CPA, quæ subducta de triangulo CPS relinquet aream APS. Applicando arearum A & APS semidifferentiam ½APS - ½A vel ½A - ½APS ad lineam SN, quæ ab umbilico S in tangentem PT perpendicularis est, orietur longitudo PQ. Capiatur autem PQ inter A & P, si area APS major sit area A, secus ad puncti P contrarias partes: & punctum Q erit locus corporis accuratius. Et computatione repetita invenietur idem accuratius in perpetuum.

Atq; his calculis Problema generaliter confit Analytice. Verum usibus Astronomicis accommodatior est calculus particularis qui sequitur. Existentibus AO, OB, OD semiaxibus Ellipseos, (Vide fig.pag.109.110.) & L ipsius latere recto, quære tum angulum Y, cujus Tangens sit ad Radium ut est semiaxium differentia AO - OD ad eorum summam AO + OD; tum angulum Z, cujus tangens sit ad Radium ut rectangulum sub umbilicorum distantia SH & semiaxium differentia AO - OD ad triplum rectangulum sub OQ semiaxe minore & AO - ¼L differentia inter semiaxem majorem & quartam partem lateris recti. His angulis semel inventis, locus corporis sic deinceps determinabitur. Sume angulum T proportionalem tempori quo arcus BP descriptus est, seu motui medio (ut loquuntur) æqualem; & angulum V (primam medii motus æquationem) ad angulum Y (æquationem maximam primam) ut est sinus anguli T duplicati ad radium; atq; angulum X (æquationem secundam) ad angulum Z (æquationem maximam secundam) ut est sinus versus anguli T duplicati ad radium duplicatum, vel (quod eodem recidit) ut est quadratum sinus anguli T ad quadratum Radii. Angulorum T, V, X vel summæ T + X + V, si angulus T recto minor est, vel differentiæ T + X - V, si is recto major est rectisq; duobus minor, æqualem cape angulum BHP (motum medium æquatum;) & si HP occurrat Ellipsi in P, acta SP abscindet aream BSP tempori proportionalem quamproxime. Hæc Praxis satis expedita videtur, propterea quod angulorum perexiguorum V & X (in minutis secundis, si placet, positorum) figuras duas tresve primas invenire sufficit. Invento autem angulo motus medii æquati BHP, angulus veri motus HSP & distantia SP in promptu sunt per methodum notissimam Dris. Sethi Wardi Episcopi Salisburiensis mihi plurimum colendi.

Hactenus de motu corporum in lineis curvis.Fieri autem potest ut mobile recta descendat vel recta ascendat, & quæ ad istiusmodi motus spectant, pergo jam exponere.



SECT.VII.

De Corporum Ascensu & Descensu Rectilineo.

Prop.XXXII.Prob.XXIV.

Posito quod vis centripeta sit reciproce proportionalis quadrato distantiæ locorum a centro, spatia definire quæ corpus recta cadendo datis temporibus describit.

Cas.1. Si corpus non cadit perpendiculariter describet id sectionem aliquam Conicam cujus umbilicus inferior congruit cum centro. Id ex Propositionibus XI, XII, XIII & earum Corollariis constat. Sit sectio illa Conica ARPB & umbilicus inferior S. Et primo si Figura illa Ellipsis est, super hujus axe majore AB describatur semicirculus ADB, & per corpus decidens transeat recta DPC perpendicularis ad axem; actisq; DS, PS erit area ASD areæ ASP atq; adeo etiam tempori proportionalis. Manente axe AB minuatur perpetuo latitudo Ellipseos, & semper manebit area ASD tempori proportionalis. Minuatur latitudo illa in infinitum, & orbe APB jam coincidente cum axe AB & umbilico S cum axis termino B, descendet corpus in recta AC, & area ABD evadet tempori proportionalis. Dabitur itaq; spatium AC, quod corpus de loco A perpendiculariter cadendo tempore dato describit, si modo tempori proportionalis capiatur area ABD, & a puncto D ad rectam AB demittatur perpendicularis DC.     Q.E.I.

Cas.2. Sin figura superior RPB Hyperbola est, describatur ad eandem diametrum principalem AB Hyperbola rectangula BD: & quoniam areæ CSP, CBfP, SPfB sunt ad areas CSD, CBED, SDEB, singulæ ad singulas, in data ratione altitudinum CP, CD; & area SPfB proportionalis est tempori quo corpus P movebitur per arcum PB, erit etiam area SDEB eidem tempori proportionalis. Minuatur latus rectum Hyperbolæ RPB in infinitum manente latere transverso, & coibit arcus PB cum recta CB, & umbilicus S cum vertice B & recta SD cum recta BD. Proinde area BDEB proportionalis erit tempori quo corpus C recto descensu describit lineam CB.     Q.E.I.

Cas.3. Et simili argumento si figura RPB Parabola est, & eodem vertice principali B describatur alia Parabola BED, quæ semper maneat data, interea dum Parabola prior in cujus perimetro corpus P movetur, diminuto & in nihilum redacto ejus Latere recto, conveniat cum linea CB, fiet segmentum Parabolicum BDEB proportionale tempori quo corpus illud P vel C descendet ad centrum B.     Q.E.I.

Prop.XXXIII.Theor.IX.

Positis jam inventis, dico quod corporis cadentis velocitas in loco quovis C est ad velocitatem corporis centro B intervallo BC circulum describentis, in dimidiata ratione quam CA, distantia corporis a Circuli vel Hyperbolæ vertice ulteriore A, habet ad figuræ semidiametrum principalem ½AB

Namq; ob proportionales CD, CP, linea AB communis est utriusq; figuræ RPB, DEB diameter. Bisecetur eadem in O, & agatur recta PT quæ tangat figuram RPB in P, atq; etiam secet communem illam diametrum AB (si opus est productam) in T; sitq; SY ad hanc rectam & BQ ad hanc diametrum perpendicularis, atq; figuræ RPB latus rectum ponatur L. Constat per Cor. 9. Theor. VIII. quod corporis in linea RPB circa centrum S moventis velocitas in loco quovis P sit ad velocitatem corporis intervallo SP circa idem centrum circulum describentis in dimidiata ratione rectanguli ½L × SP ad SY quadratum. Est autem ex Conicis ACB ad CPq. ut 2AO ad L, adeoq; 2CPq. × AO ÷ ACB æquale L. Ergo velocitates illæ sunt ad invicem in dimidiata ratione CPq. × AO × SP ÷ ACB ad SY quad. Porro ex Conicis est CO ad BO ut BO ad TO, & composite vel divisim ut CB ad BT. Unde dividendo vel componendo fit BO - uel + CO ad BO ut CT ad BT, id est AC ad AO ut CP ad BQ; indeq; CPq. × AO × SP ÷ ACB æquale est BQq. × AC × SP ÷ {AO × BC}. Minuatur jam in infinitum figuræ RPB latitudo CP, sic ut punctum P coeat cum puncto C, punctumq; S cum puncto B, & linea SP cum linea BC, lineaq; SY cum linea BQ; & corporis jam recta descendentis in linea CB velocitas fiet ad velocitatem corporis centro B interuallo BC circulum describentis, in dimidiata ratione ipsius BQq. × AC × SP ÷ {AO × BC} ad SYq. hoc est (neglectis æqualitatis rationibus SP ad BC & BQq. ad SYq.) in dimidiata ratione AC ad AO.     Q.E.D.

Corol. Punctis B & S coeuntibus, fit TC ad ST ut AC ad AO

Prop.XXXIV.Theor.X.

Si figura BED Parabola est, dico quod corporis cadentis velocitas in loco quovis C æqualis est velocitati qua corpus centro B dimidio intervalli sui BC circulum uniformiter describere potest.

Nam corporis Parabolam RPB circa centrum S describentis velocitas in loco quovis S (per Corol. 7. Theor. VIII) æqualis est velocitati corporis dimidio intervalli SP circulum circa idem S uniformiter describentis. Minuatur Parabolæ latitudo CP in infinitum eo, ut arcus Parabolicus PfB cum recta CB, centrum S cum vertice B, & interuallum SP cum intervallo BP coincidat, & constabit Propositio.     Q.E.D.

Prop.XXXV.Theor.XI.

Iisdem positis, dico quod area figuræ DES, radio indefinito SD descripta, æqualis sit areæ quam corpus, radio dimidium lateris recti figuræ DES æquante, circa centrum S uniformiter gyrando, eodem tempore describere potest.

Nam concipe corpus C quam minima temporis particula lineolam Cc cadendo describere, & interea corpus aliud K, uniformiter in circulo OKk circa centrum S gyrando, arcum Kk describere. Erigantur perpendicula CD, cd occurrentia figuræ DES in D, d. Jungantur SD, SK, Sk & ducatur Dd axi AS occurrens in T, & ad eam demittatur perpendiculum SY

Cas.1. Jam si figura DES Circulus est vel Hyperbola, bisecetur ejus transversa diameter AS in O, & erit SO dimidium Lateris recti. Et quoniam est TC ad TD ut Cc ad Dd, & TD ad TS ut CD ad SY, erit ex æquo TC ad TS ut CD × Cc ad SY × Dd. Sed per Corol. Prop. 33. est TC ad ST ut AC ad AO, puta si in coitu punctorum D, d capiantur linearum rationes ultimæ. Ergo AC est ad AO, id est ad SK, ut CD × Cc ad SY × Dd. Porro corporis descendentis velocitas in C est ad velocitatem corporis circulum intervallo SC circa centrum S describentis in dimidiata ratione AC ad AO vel SK (per Theor. IX.) Et hæc velocitas ad velocitatem corporis describentis circulum OKk in dimidiata ratione SK ad SC per Cor. 6. Theor. IV. & ex æquo velocitas prima ad ultimam, hoc est lineola Cc ad arcum Kk in dimidiata ratione AC ad SC, id est in ratione AC ad CD. Quare est CD × Cc æquale AC × Kk, & propterea AC ad SK ut AC × Kk ad SY × Dd, indeq; SK × Kk æquale SY × Dd, & ½SK × Kk æquale ½SY × Dd, id est area KSk æqualis areæ SDd. Singulis igitur temporis particulis generantur arearum duarum particulæ KSk, SDd, quæ, si magnitudo earum minuatur & numerus augeatur in infinitum, rationem obtinent æqualitatis, & propterea (per Corollarium Lemmatis IV) areæ totæ simul genitæ sunt semper æquales.     Q.E.D.

Cas.2. Quod si figura DES Parabola sit, invenietur ut supra CD × Cc esse ad SY × Dd ut TC ad ST, hoc est ut 2 ad 1, adeoq; ¼CD × Cc æqualem esse ½SY × Dd. Sed corporis cadentis velocitas in C æqualis est velocitati qua circulus intervallo ½SC uniformiter describi possit (per Theor. X.) Et hæc velocitas ad velocitatem qua circulus radio SK describi possit, hoc est, lineola Cc ad arcum Kk est in dimidiata ratione SK ad ½Sc, id est, in ratione SK ad ½CD, per Corol.6.Theorem.IV.Quare est ½SK × Kk æquale ¼CD × Cc, adeoq; æquale ½SY × Dd, hoc est, area KSk æqualis Areæ SDd, ut supra. Quod erat demonstrandum.

Prop.XXXVI.Prob.XXV.

Corporis de loco dato A cadentis determinare tempora descensus.

Super diametro AS (distantia corporis a centro sub initio) describe semicirculum ADS, ut & huic æqualem semicirculum OKH circa centrum S. De corporis loco quovis C erige ordinatim applicatam CD. Junge SD, & areæ ASD æqualem constitue Sectionem OSK. Patet per Theor. XI, quod corpus cadendo describet spatium AC eodem tempore quo corpus aliud uniformiter circa centrum S gyrando, describere potest arcum OK. Quod erat faciendum.

Prop.XXXVII.Prob.XXVI.

Corporis de loco dato sursum vel deorsum projecti definire tempora ascensus vel descensus.

Exeat corpus de loco dato G secundum lineam ASG cum velocitate quacunq;. In duplicata ratione hujus velocitatis ad uniformem in circulo velocitatem, qua corpus ad intervallum datum SG circa centrum S revolvi posset, cape CA ad ½AS. Si ratio illa est numeri binarii ad unitatem, punctum A cadet ad infinitam distantiam, quo in casu Parabola uertice S, axe SC, latere quovis recto describenda est. Patet hoc per Theorema X. Sin ratio illa minor vel major est quam 2 ad 1, priore casu Circulus, posteriore Hyperbola rectangula super diametro SA describi debet. Patet per Theorema IX. Tum centro S, intervallo æquante dimidium lateris recti, describatur circulus HKk, & ad corporis ascendentis vel descendentis loca duo quævis G, C, erigantur perpendicula GI, CD occurrentia Conicæ Sectioni vel circulo in I ac D. Dein junctis SI, SD, fiant segmentis SEIS, SEDS Sectores HSK, HSk æquales, & per Theorema XI. corpus G describet spatium GC eodem tempore quo corpus K describere potest arcum KkQ.E.F.

Prop.XXXVIII.Theor.XII.

Posito quod vis centripeta proportionalis sit altitudini seu distantiæ locorum a centro, dico quod cadentium tempora, velocitates & spatia descripta sunt arcubus arcuumq; sinibus versis & sinibus rectis respective proportionales.

Cadat corpus de loco quovis A secundum rectam AS; & centro virium S, intervallo AS, describatur circuli quadrans AE, sitq; CD sinus rectus arcus cujusvis AD, & corpus A, tempore AD, cadendo describet spatium AC, inq; loco C acquisierit velocitatem CDDemonstratur eodem modo ex Propositione X.quo Propositio XXXII.ex Propositione XI.demonstrata fuit.Q.E.D.

Corol.1. Hinc æqualia sunt tempora quibus corpus unum de loco A cadendo provenit ad centrum S, & corpus aliud revolvendo describit arcum quadrantalem ADE

Corol.2. Proinde æqualia sunt tempora omnia quibus corpora de locis quibusvis ad usq; centrum cadunt. Nam revolventium tempora omnia periodica (per Corol. 3. Prop. IV.) æquantur.

Prop.XXXIX.Prob.XXVII.

Posita cujuscunq; generis vi centripeta, & concessis figurarum curvilinearum quadraturis, requiritur corporis recta ascendentis vel descendentis tum velocitas in locis singulis, tum tempus quo corpus ad locum quemvis perveniet: Et contra.

De loco quovis A in recta ADEC cadat corpus E, deq; loco ejus E erigatur semper perpendicularis EG, vi centripetæ in loco illo ad centrum C tendenti proportionalis: Sitq; BFG linea curva quam punctum G perpetuo tangit. Coincidat autem EG ipso motus initio cum perpendiculari AB, & erit corporis velocitas in loco quovis E ut areæ curvilineæ ABGE latus quadratum.     Q.E.I.   In EG capiatur EM lateri quadrato areæ ABGE reciproce proportionalis, & sit ALM linea curva quam punctum M perpetuo tangit, & erit tempus quo corpus cadendo describit lineam AE ut area curvilinea ALME. Quod erat Inveniendum.

Etenim in recta AE capiatur linea quam minima DE datæ longitudinis, sitq; DLF locus lineæ EMG ubi corpus versabatur in D; & si ea sit vis centripeta, ut area ABGE latus quadratum sit ut descendentis velocitas, erit area ipsa in duplicata ratione velocitatis, id est, si pro velocitatibus in D & E scribantur V & V + I, erit area ABFD ut V2, & area ABGE ut V2 + 2VI + I2, & divisim area DFGE ut 2VI + I2, adeoq; DFGE ÷ DE ut {2I × V + ½I} ÷ DE, id est, si primæ quantitatum nascentium rationes sumantur, longitudo DF ut quantitas 2I × V ÷ DE, adeoq; etiam ut quantitatis hujus dimidium I × V ÷ DE. Est autem tempus quo corpus cadendo describit lineolam DE, ut lineola illa directe & velocitas V inverse, estq; vis ut velocitatis incrementum I directe & tempus inverse, adeoq; si primæ nascentium rationes sumantur, ut I × V ÷ DE, hoc est, ut longitudo DF. Ergo vis ipsi DF vel EG proportionalis facit corpus ea cum velocitate descendere quæ sit ut areæ ABGE latus quadratum. Q. E. D.

Porro cum tempus, quo quælibet longitudinis datæ lineola DE describatur, sit ut velocitas, adeoq; ut areæ ABFD latus quadratum inverse; sitq; DL, atq; adeo areæ nascens DLME, ut idem latus quadratum inverse: erit tempus ut area DLME, & summa omnium temporum ut summa omnium arearum, hoc est (per Corol. Lem. IV.) tempus totum quo linea AE describitur ut area tota AMEQ.E.D.

Corol.1. Si P sit locus de quo corpus cadere debet, ut, urgente aliqua uniformi ui centripeta nota (qualis vulgo supponitur gravitas) velocitatem acquirat in loco D æqualem velocitati quam corpus aliud vi quacunq; cadens acquisivit eodem loco D, & in perpendiculari DF capiatur DR, quæ sit ad DF ut vis illa uniformis ad vim alteram in loco D, & compleatur rectangulum PDRQ, eiq; æqualis abscindatur area ABFD; erit A locus de quo corpus alterum cecidit. Namq; completo rectangulo EDRS, cum sit area ABFD ad aream DFGE ut VV ad 2V × I, adeoq; ut ½V ad I, id est, ut semissis velocitatis totius ad incrementum velocitatis corporis vi inæquabili cadentis; & similiter area PQRD ad aream DRSE ut semissis velocitatis totius ad incrementum velocitatis corporis uniformi vi cadentis; sintq; incrementa illa (ob æqualitatem temporum nascentium) ut vires generatrices, id est ut ordinatim applicatæ DF, DR, adeoq; ut areæ nascentes DFGE, DRSE; erunt (ex æquo) areæ totæ ABFD, PQRD ad invicem ut semisses totarum velocitatum, & propterea (ob æqualitatem velocitatum) æquantur.

Corol.2. Unde si corpus quodlibet de loco quocunq; D data cum velocitate vel sursum vel deorsum projiciatur, & detur lex vis centripetæ, invenietur velocitas ejus in alio quovis loco e, erigendo ordinatam eg, & capiendo velocitatem illam ad velocitatem in loco D ut est latus quadratum rectanguli PQRD area curvilinea DFge vel aucti, si locus e est loco D inferior, vel diminuti, si is superior est, ad latus quadratum rectanguli solius PQRD, id est ut √PQRD + vel - DFge ad √PQRD

Corol.3. Tempus quoq; innotescet erigendo ordinatam em reciproce proportionalem lateri quadrato ex PQRD + vel - DFge, & capiendo tempus quo corpus descripsit lineam De ad tempus quo corpus alterum vi uniformi cecidit a P & cadendo pervenit ad D, ut area curvilinea DLme ad rectangulum 2PD × DL. Namq; tempus quo corpus vi uniformi descendens descripsit lineam PD est ad tempus quo corpus idem descripsit lineam PE in dimidiata ratione PD ad PE, id est (lineola DE jamjam nascente) in ratione PD ad PD + ½DE seu 2PD ad 2PD + DE, & divisim, ad tempus quo corpus idem descripsit lineolam DE ut 2PD ad DE, adeoq; ut rectangulum 2PE × DL ad aream DLME; estq; tempus quo corpus utrumq; descripsit lineolam DE ad tempus quo corpus alterum inæquabili motu descripsit lineam De ut area DLME ad aream DLme, & ex æquo tempus primum ad tempus ultimum ut rectangulum 2PD × DL ad aream DLme



SECT.VIII.

De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur.

Prop.XL.Theor.XIII.

Si corpus, cogente vi quacunq; centripeta, moveatur utcunq;, & corpus aliud recta ascendat vel descendat, sintq; eorum velocitates in aliquo æqualium altitudinum casu æquales, velocitates eorum in omnibus æqualibus altitudinibus erunt æquales.