Gunpowder and Ammunition, Their Origin and Progress

Gunpowder and Ammunition, Their Origin and Progress
Author: H. W. L. Hime
Pages: 387,433 Pages
Audio Length: 5 hr 22 min
Languages: en

Summary

Play Sample

“Mit Worten lässt sich trefflich streiten,
Mit Worten ein System bereiten.”

Halhed’s mistakes might have been forgotten had they not been revived and elaborated by Professor G.Oppert in an essay “On the Weapons, &c., of the Ancient Hindus,” London, 1880.His argument is briefly this: firearms are clearly mentioned in the “Laws of Manu” and two very ancient Sanskrit poems; therefore at some very remote period the Hindus possessed an explosive which, for whatever reason, fell into disuse eventually.

“Does the passage in Manu refer to firearms or not?”asks Dr. Oppert.“In our opinion it certainly alludes to them” (p.70).We need not recur to the mistranslation of Manu already noticed.

The two poems on which Dr. Oppert relies for further evidence are the Nitiprakásika of Vaisampayana, and the Sukraniti of Sukra. According to the former, the Hindu deities, Sita, Indra, Krishna, &c. , were authors of “books on polity.” Brahma’s contribution to literature consisted of 10,000,000 double verses (p. 36). The constitution of an army was as follows (p. 5):—

Foot2,187,000,000
Horse21,870,000
Elephants218,700
Chariots21,870

The “arms in use” of one species were forty-four in number; of another species, fifty-five.Rabelais has only succeeded in cataloguing forty-six arms in the introduction to the third book of “Pantagruel.”Lest the ninety-nine arms in use might fail to ensure success, a spell (of thirty-two syllables) is given (p.10) which would bring certain victory to him who repeated it 32,000 times. Both of these veracious works, however, undoubtedly mention cannon and muskets, and a recipe for gunpowder is given in the Sukraniti236

Dr. Oppert makes no critical examination of the texts of these poems to ascertain whether they contain the interpolations to be found in most Oriental works. Of their age he only says that “no Chinese work ... can, with respect to antiquity, be compared with the Sukraniti” (p.45).As the reader will find in the following chapter, this implies a considerable age.

It is hard to believe that gunpowder was known to a people whose language contained no word for saltpetre;237 that cannon were used by men whose books make no allusion to gunpowder, with the exception just mentioned. “It is peculiar,” says Dr. Oppert, “that powder should not have been mentioned in Sanskrit works” (p. 63). The same peculiarity is observable in Anglo-Saxon works, and is probably due to the same cause. But the fatal objection to the existence of this very early explosive is the admitted fact that after a time it was discarded and forgotten. Writers who lightly tell us so are apparently unconscious of the greatness of the demand they make upon our credulity. They ask us, in effect, to accept the astonishing proposition, that a nation voluntarily surrendered, without any assignable cause, an incalculable “advantage” in the “struggle for existence”—the eager, continuous, and unending preparation for self-defence which is, in Mr. Bagehot’s words, “the most showy fact” in human history. It is infinitely more probable that the passages in the two poems which mention gunpowder and cannon were interpolated by the scribes of after-ages than that the Hindus wantonly broke the first and strongest law of human nature, the law of self-defence. There can be no reasonable doubt that the recipe for gunpowder in the Sukraniti is an interpolation. The proportions are given in the first place as 5:1:1, and then it is added, “if the powder is to be used for a gun,” let them be 4:1:1, or 6:1:1.238 And why not 5:1:1 also? This recipe was not written by a gunner: it is the handiwork of some charlatan of the sixteenth or seventeenth century, who imagined that, by making a certain mystery about the proportions 5:1:1, he should give a semblance of great antiquity to the recipe. But he blundered badly about the proportions. The proportions 4:1:1 were only reached by the Swedes about the middle of the sixteenth239 century, and approached by the English about the middle of the seventeenth,240 and powder of such strength would have blown weak, early bombards to pieces. Other sound reasons are given by competent critics for rejecting from first to last the allusions to firearms contained in the two poems. A critic in Nature points out that a work which mentions the Hunas (Huns or Europeans) cannot be of the age apparently assigned by Dr. Oppert to the Nitiprakásika241 “Oppert,” says Sir R. Burton, “shows no reason why the allusions to, and descriptions of, gunpowder and firearms should not be held modern interpolations into these absurd compositions.”242 Mr. W. F. Sinclair concludes from the strong resemblance between the firearms described and those which we know were imported into India during the sixteenth and seventeenth centuries, either that the MSS. date no further back than the sixteenth century, or that the allusions to firearms were interpolated at that period.243 “One is naturally led to suspect,” says Professor Ray, “that the lines (of the Sukraniti) relating to gunpowder ... are interpolations.” The suspicion is further enhanced when it is borne in mind that in the “Polity of Kamandaki,” an ancient work of undoubted authenticity, “there occurs no reference whatever to firearms, nor is there any in the Agnipurana, in which the subject of training in the use of arms and armour takes up four chapters.... The more rational conclusion would be that the Sukraniti is a patchwork, in which portions of chap. iv. were added some time after the introduction of gunpowder in Indian warfare during the Moslem period.”244 “The last chapter is apparently spurious,” says Rajendralala Mitra, “as it describes guns as they existed a hundred years ago.”245 Finally, Herr von Romocki utterly rejects Dr. Oppert’s theory.246

The military history of India confirms the conclusions of the writers who have been quoted: not a fact is to be found there which lends any support to the theory of early gunpowder in India.

The employment of gunpowder in Europe revolutionised the art of war and affected, more or less, almost every human institution.“The military art,” says Gibbon, “has been changed by the invention of gunpowder....Mathematics, chymistry, mechanics, architecture, have been applied to the science of war.”247 Gunpowder, says A. Comte, “en emprimant à l’art de la guerre un caractère de plus en plus scientifique, a directement tendu à intéresser tous les pouvoirs à l’actif dévellopement continu de la philosophie naturelle.”248 We may reasonably assume that the discovery of so tremendous an agent as gunpowder would have produced in India some few effects, at least, similar in their general features to the effects it produced in Europe. To mention one or two details: Sanskrit would have coined a word for saltpetre, which it did not possess; the use of the bow would have been curtailed; a lasting mark would have been put on fortifications; and some few specimens of the early firearms might have survived. Not a trace of these or similar changes is to be found; not a vestige of early firearms has remained. General Cunningham thought that the state of the ruins of certain ancient Kashmir temples proves the use of an explosive in their destruction,249 but more prolonged observation shows that their condition is chiefly the effect of natural agencies. “The fingers of Time, and moderate movements of the earth, have been making openings in some of the other old Hindu buildings in Kashmir,” such as the little temple of Payach and the splendid temple of Martand; “and from their appearance it may be believed that these same agencies, together with undermining work applied for wilful destruction, could do what has been done.”250 The plentiful supply of saltpetre to be found in the valley of the Ganges has been brought forward as a proof that the ancient Hindus must have had gunpowder, but the fact proves nothing. How many centuries did coal lie within reach of man’s hand, in England and elsewhere, before it was discovered and made use of? The attractive property of the magnet was known to Plato in the fifth century B.C., and Lucretius in the first century B.C. devotes a long passage of his poem to it (vi. 909-1089); yet its property of pointing north and south when free to move horizontally is first distinctly mentioned (in Europe) in the twelfth century A.D.251

Early Indian gunpowder is a fiction.

The first gunpowder and firearms used in India were neither invented nor manufactured by the Hindus: they were imported during the Middle Ages from the West.The guns of Upper India entered through Afghanistan; those of Western India were brought by ships.Let us consider the latter first.

“If any reliance is to be placed on Moulla Daud Bidury, the author of Tohfutu-s Salutin,” says General Briggs, “guns were used (in 1368) by the Hindus (of Bijanagar), and in a subsequent passage (Ferishta remarks) that the Muhammadans used them for the first time during the next campaign.But I am disposed to doubt the validity of both these statements.... Ferishta ... also observes that Turks and Europeans skilled in gunnery worked the artillery. That guns were in common use before the arrival of the Portuguese in India in 1498, seems certain from the mention of Faria y Sousa.”252

The first observation suggested by this passage is, that Ferishta does not say the Hindus had guns on this occasion; he says they had عرابه (’arábah),253 a word which originally meant a cartIn the early days of field artillery the guns were carried in carts,254 from which they were taken and laid on trestles when required for use. Wheeled gun-carriages only came into general use in Europe during the reign of Louis XI. of France (1461-83).255 Things followed the same course in India, and the word ’arába thus came in time to have two meanings; most arába being simply carts, some being (so to speak) gun-carriages. Then later writers arose who insisted that all ’arába were gun-carriages at the early date of 1368, because some ’arába were gun-carriages in and after 1526.Ferishta (who died about 1611) fell into the trap, and after him fell several modern historians.

Secondly, General Briggs’ conclusion about guns in India before 1498 seems somewhat unguarded.It is beyond dispute that firearms were used on the west coast of India during the last quarter of the fifteenth century, but the evidence we possess points to the conclusion that they belonged almost exclusively to Arab and Portuguese ships.The fact that Captain Cook cruised on the coast of Otaheite in 1769 in a ship equipped with firearms, does not warrant the conclusion that the natives possessed firearms. Ferishta was writing about events which took place two hundred years before he was born, and there is a particular reason for doubting the existence of firearms in Bijanagar at this early period.

In 1441 ’Abd ur-Razzak, who had been sent to India by Shah Rukh on an embassy to Calicut, visited Bijanagar, whose ruins may still be seen on the banks of the Tumbhadra.He has given us a full and amusing account of what he saw, bursting forth into poetry on the ugliness of the natives:—

“I have loved a moon-faced beauty,
But I cannot fall in love with every black woman.”256

He was present at the great review held during the festival of Mahanawi, when “the number of people and the huge elephants resembled the green sea and the myriads which will appear on the Plains of the Resurrection.”Not an allusion is made to firearms, although he notices the naphtha-throwers mounted on elephants.257

Ferishta tells us that in the year 887 A.H. (A.D. 1482), Mahmoud Shah Begurra of Gujarat, hearing that Cambay was likely to be raided by the pirates of Bulsar, collected a fleet containing “a force of gunners, musketeers, and archers,” and defeated them. On this passage General Briggs remarks: “This is the first mention of artillery and musketry in the Gujarat history. They were probably introduced by the Arabs and Turks from the Red Sea and Persian Gulf.”258 The firearms that came from the Persian Gulf must have been few and far between. Writing in 1549, a Jesuit says: “The Persians use no bombards or arms of this kind.”259

There is no mention of the Bulsar expedition in the “History of Gujarat,” by Ali Muhammad Khan, translated by Mr. J.Bird.

The Mirat-i Sikandari, a history of Gujarat translated by Sir E. C. Bayley, speaks of an attack made by Mahmoud on certain pirates as early as 878 A.H. (A.D. 1473), but neither Bulsar nor firearms are mentioned. We are told, however, that during a previous expedition in the same year against the island of Sankhodhar, the infidels (Hindus) “resisted bravely and kept up a sustained discharge of arrows and muskets” (pp.198-9).

Ferishta relates that during the siege of Champanir, 1484, a shell (hookah) fell on the Rajah’s palace; but he does not state how it was discharged, nor whether it was explosive or incendiary.260

On landing at Calicut in 1498, Vasco da Gama and his followers were led through the streets with tomtoms beating, and from time to time an espingarda, or musket, was fired off.261 The town seems to have possessed only one of these weapons. At least, the soldiers of the guard who mounted over Gama after he had been arrested were not armed with espingardas, but with swords, daggers, and bows,262 and no mention is made of there being any cannon in the town.

In 1502 a sea-fight took place in these waters between a Portuguese man-of-war and a Moorish (Arab) ship, during which the Arab bore down on the Portuguese, “pouring in her shot, and then made away.”263 The original says: “Una nube de flechas sobre nuestra gente y algunas balas;” i.e. a cloud of arrows and some balls.264 These balls were undoubtedly cannon balls.

It is stated in MSS. 826-8, Bib.Nat., Paris, that in 917 A.H. (A.D. 1511-12) Modhaffer Shah of Gujarat sent to Kansuh, King of Egypt, asking him for arms and cannon to enable the Gujaratis to defend themselves against the Europeans; “the people of India not having hitherto possessed Artillery of any kind.”265 In answer to this request, Hossain was sent to sea in command of a considerable fleet. If Mahmoud possessed ships with guns in 1482, how came it that in 1511 the Gujaratis were sending round the world begging for firearms? Had Mahmoud merely hired for the occasion from the Arabs the ships and guns with which he crushed the Bulsar pirates? It is impossible to say categorically; but two facts may be extracted from the foregoing conflicting statements—first, that firearms were used by Arab and Portuguese ships on the west coast of India before the Hindus possessed them, and secondly, that there was an espingarda in the town of Calicut in 1498.

Whatever doubt there may be about the exact date at which the natives of Western India first procured firearms from the foreign ships which visited their shores, there can be none about the first employment of artillery in Upper India.

As has been already stated, the machines of the Greeks were adopted at an early period by the Persians, from whom they were eventually borrowed by the Arabs, Mughals, &c.The Hindus in turn adopted the machines they saw employed by their invaders and named them, according to their custom, after the part of the world they came from—maghribíha = western (machines or manjaník). At the abortive attack on Rantambhor, 1290, Sultan Jalalu-d Din ordered Westerns to be erected.266 The Hindus had collected materials for making incendiaries before being besieged in the same fortress by Sultan Alau-d Din in 1300. “Every day the fire of those infernals fell on the light of the Moslems, and, as there were no means of extinguishing it, they filled bags with clay and prepared entrenchments.... The Royal Westerns shot large earthen balls against that infidel fort.... The stones from the ballistas and catapults within and without the fort encountered each other half-way and emitted lightening.”267 During the attack on Arangal, 1309, the Westerns “were played on both sides and many were wounded.”268 The mud walls were so strong and elastic that the balls of the Westerns rebounded off them “like nuts which children play with.”269 Eventually the “western stone-balls” formed a breach and the fort fell. Such is the account given by Amir Khusru who died in 1315, of whom Sir H. M. Elliot says (vi. 465):—“He is full of illustrations and leaves no manner of doubt that nothing like gunpowder was known to him.” Near the close of the century, 1398-9, the Hindus besieged by Timur in Bhatnir “cast down in showers arrows and stones and fireworks upon the heads of the assailants.”270 At the attack on Chanderi, 1527-8, “the Pagans exerted themselves to the utmost, hurling down stones and throwing flaming substances on the heads” of Babar’s troops.271 In 1528-9, the Hindus succeeded in igniting with “fireworks, turpentine, and other combustibles” some hay which the Mughals had collected in the fort of Lucknow. The heat became so intolerable that the Mughals retired and the fort was taken.272

It is needless to enlarge the list of quotations: incendiaries pursued much the same course in Upper India as in Greece and Arabia.No reliable evidence of an explosive is to be found until the 21st April 1526, the date of the decisive battle of Panipat, in which Ibrahim, Sultan of Delhi, was killed and his army routed by Babar, the Mughal, who possessed firearms great and small.273

On the introduction of Artillery the word maghribiha was gradually replaced by the more definite word feringiha = European. At Panipat the Artillery of the left centre was commanded by Mustapha Rumi, whose name is sufficient proof of his western origin. But traces of European artisans are to be found long before this. When the King of Gor crossed the Attok in the twelfth century, he had with him “skilful Franks, learned in all the arts.”274 The success of the attack on Chitor in 1591, by Buhadur, Sultan of Gujarat, was chiefly due to his engineer, Labri Khan of Frengan = Frangistan, the country of the Franks.275 Speaking of the Mughal Artillery in 1695, Dr. Careri tells us that it was “all, especially the heavy Artillery, under the direction of Franks, or Christian gunners, who had extraordinary pay.”276

Haidar Mirza gives us one or two details about Babar’s guns which deserve a passing notice.277 There was a zarb-zan, or swivel gun, carrying a ball of 500 miskals, and a heavier gun throwing a “brass” ball which weighed 5000 miskals, and cost 200 miskals of silver. The former was drawn by four, the latter by eight pairs of bullocks. Let us adopt the weight of the miskal given in Steingass’ “Persian Dictionary,”—1-3/7 drachms = 39.045 grs. troy, which makes the weight of Babar’s large ball 34 lbs. nearly.278 Its price, 200 miskals, would then be 7809 grs.troy of pure (silver), or (since our standard shilling is 87.27 grs.troy and its fineness 37/40) 96.7 shillings of our present money.The price of a 10.18 lbs.ball of the same material would consequently be 29s., including the cost of manufacture.The price of the English 4” bronze ball of 10.18 lbs.given here in Table X., is 26.468d., or about 22s.of our present money, exclusive of the cost of manufacture.Adding 7s.to cover the cost of manufacture,279 its price would be about 29s. The value of the alloy in our shilling has been neglected here, and Queen Elizabeth’s money may not have been worth exactly seven times our money; but making full allowance for both these errors, the prices of the two balls approximate as closely as can be reasonably expected.

Gunpowder was not invented by the Hindus: its discovery by them would have fallen little short of a miracle. The extinction of Buddhism about the ninth century A.D., and the consequent establishment of a dominant priestly class, were a deathblow to the cultivation of physical science. By the seemingly innocent institution of caste, the Brahmins succeeded in trampling science in the dust.One caste was not permitted to touch this, another caste could not touch that substance; and the higher the caste, the greater the number of forbidden objects.The study of experimental science was consequently thrown back upon the lowest and poorest classes, who had neither the means, the leisure, nor the inclination to pursue it.Thus “the spirit of inquiry gradually died out,” says a Hindu Professor of Chemistry, “and the name of India was all but expunged from the map of the scientific world.”280


CHAPTER VII

THE CHINESE

China, like India, affords an example of “arrested civilisation:” the Chinese intellect and language became petrified while still in a primitive stage of development.But, unlike the Hindus, the Chinese betook themselves at an early period to historical pursuits.“Debarred both by the nature of the material at their command and by a lack of original genius from indulging in the higher branches of imaginative writing, Chinese authors devoted themselves with untiring energy and with very considerable ability to the compilation of information concerning their own and neighbouring countries.”281 Among the results of their labours are the “Twenty-One Histories,” from the third century B.C. to the middle of the seventeenth century, sixty-six folio volumes, and a number of vast Encyclopædias, of which the Koo-kin-too-shoo, &c., occupies 6109 volumes.From such immense compilations and other sources Chinese scholars have supplied us with much information about the present subject.

Although the invention of gunpowder is disclaimed for his countrymen “by every (Chinese) writer who treats seriously” on the subject,282 the people cherish the legend that the invention was made by a Chinaman in some forgotten past. The existence of this legend among a people possessed of a deep veneration for antiquity is in no way surprising. Every Chinese custom, art, and institution is supposed to be very ancient, and what is not really old is readily invested with fictitious antiquity. The world as we know it, they tell us, came into being 2,670,000 years before Confucius, who was a contemporary of the prophet Daniel. “The more sober historians, however, are content to begin with a sufficiently mythical Emperor, who reigned only 2800 years before the Christian era.”283 This insatiable craving for antiquity is shown in all their works. “As with all other arts (the Chinese) have claimed for the manufacture of porcelain an antiquity far beyond the actual facts of the case. This exaggerated estimate of the antiquity of Chinese porcelain was for a long time supported by the supposed discovery in Egypt of certain small bottles made of real porcelain and inscribed with Chinese characters, which were said to have been found in tombs at Thebes, dating as early as 1800 B.C. The fact, however, that they are inscribed with quotations from Chinese poets of the eighth century A.D., and have characters of a comparatively modern form, shows that the whole story of their discovery is a fraud....During all periods Chinese potters were constantly in the habit of copying earlier styles and of forging their marks, so that very little reliance can be placed on internal evidence.Indeed, the forgeries often deceive the Chinese collectors of old porcelain.”284

According to the Jesuits, Chinese history is free from this defect. Father Moyria de Maillac (commonly called Mailla), in the long introductions to his Histoire générale de la Chine, begs us to put our full trust in the Chinese historians, and pleads that, however mendacious the lower orders of the nation, the better classes love the truth, and the historians are honest and accurate.But such pleas in bar of investigation and verification are of little weight unless it can be shown that Chinese historians never drew (in good faith) erroneous conclusions, never mistook the meaning of a document, were never misinformed, and never made a slip in writing.As Gibbon clearly saw,285 the Jesuits were blinded by admiration of the Celestials; their sharp, critical sagacity was blunted by the air of sincerity displayed in Chinese books.286 But this “accent de sincérité” is ruthlessly treated by MM. Langlois and Seignobos: “C’est une impression presque irrésistible, mais elle n’en est pas moins une illusion.Il n’y a aucun critérium extérieur ni de la sincérité ni de l’exactitude.‘L’accent de sincérité,’ c’est l’apparence de la conviction; un orateur, un acteur, un menteur d’habitude l’auront plus facilement en mentant qu’un homme indécis en disant ce qu’il croit.La vigeur de l’affirmation ne prouve pas toujours la vigeur de la conviction, mais seulement l’habileté ou l’effronterie.De même l’abondance et la précision des détails, bien quelles fassent une vive impression sur les lecteurs inexpérimentés, ne garantissent pas l’exactitude des faits;287 elles ne renseignent que sur l’imagination de l’auteur quand il est sincère ou sur son impudence quand il ne l’est pas. On est porté de dire d’un récit circonstancié: ‘Des choses de ce genre ne s’inventent pas.’ Elles ne s’inventent pas, mais elles se transportent très facilement d’un personage, d’un pays ou d’un temps à un autre. —Aucun caractère extérieur d’un document ne dispense donc d’en faire la critique.”288 In spite of their zeal for the truth, Chinese historians are no more infallible than others, and it is certain that they were unconsciously led into error at times by the change in meaning which military words underwent in China as well as elsewhere. Thus

Mao-yiian-i erroneously believed that huo-p’áu meant cannon in old times, as it did in his own. But from a sketch he has fortunately given of one (reproduced by Romocki, i. 41) it is clear that it originally meant a machine for scattering blazing incendiary matter.

The first two questions that present themselves are: (1) Did the Chinese make use of gunpowder in a very distant past?and (2) did they possess an explosive shell in 1232?

The Chinese annals give no support to the hypothesis that gunpowder was known in China in very early times.Currency was given to the popular legends about it by such writers as Father Gaubil, who declares that gunpowder had been in use for 1600 years when he wrote, and Father Amiot, who fully accepts a much earlier date.With reference to Koung-ming, who is said to have employed earth-thunder (ty-lei) about 200 A.D., Amiot says: (a) “Les auteurs qui parlent de Koung-ming ne le font pas l’inventeur de cette manière de nuire à l’ennemi.Ils disent, au contraire, qu’il l’avait puisée dans les ouvrages des anciens guerriers; ce qui est une preuve sans réplique que les Chinois connaissaient la poudre à tirer ...bien longtemps avant que cette connaissance fût parvenue en Europe....(b) Les anciens Chinois employaient la poudre (chen-ho-yen), soit dans les combats, soit pour mettre le feu au camp des ennemis....(c) Cette poudre (ny-foung-yo) a une vertue qui, ce me semble, pourrait être d’une très grande utileté dans nos armées; c’est que la fumée va également contre le vent.”289 In (a) and (c) of these extracts the true note of legend is audibly sounded, and the tacit assumption that ty-lei was an explosive is to be noted. As to (b), Amiot was unwittingly describing some early incendiary similar to that of Marcus Græcus, No.2: “Ignis quæ comburit domos inimicorum.”Such is Father Amiot’s “preuve sans réplique” that the Chinese possessed gunpowder in the times of the pre-adamite Sultans.It must be put aside; and with it must be laid the evidence of Fathers Maillac and Gaubil.First, their critical faculty became paralysed when dealing with Chinese history.Secondly, they evidently did not understand the difference between an explosive and an incendiary.Thirdly, without questioning their good faith, they are open to the charges brought against them by MM.Reinaud and Favé, when speaking of M.Quatremère’s dating Artillery in China at the thirteenth century: “(Il) ne s’est pas aperçu que PP.Mailla et Gaubil avaient traduits différement certains passages des Annales chinoises, et qu’ils y avaient même ajouté tantôt des expressions de leur cru, et tantôt des interpolations de la version tartare-mandchou, version qui date seulement d’un peu plus d’un siècle, et qui, par consequent, n’a aucune autorité.”290

Had the Chinese an explosive shell in 1232?

The following is a translation by M. Stanislas Julien of a passage in the Encyclopædia entitled Tung-Chien-Kang-Mu, relating to the siege of Pien-king (now Kai-fung-fu) in 1232, given by Reinaud and Favé in the Journal Asiatique, Oct. 1849: “A cette époque on faisait usage de ho-pao ou pao à feu, appelée Tchin-tien-louï, ou ‘tonnerre qui ébranle le ciel,’ On se servait pour cela d’un pot en fer que l’on remplissait de yo. A peine y avait-on mis le feu que le pao s’élevait, et que le feu éclatait de toute part. Son bruit ressemblait à celui du tonnerre, et s’étendait à plus de cent lis (i.e. thirty-three English miles); il pouvait répandre l’incendie sur une surface de plus d’un demi-arpent (i.e. about one-third of an acre).... Les Mongols construisirent avec les peaux de bœuf un couloir qui leur permit d’arriver jusqu’an pied des remparts. Ils se mirent à saper les murs, et y pratiquèrent des cavités, où l’on pouvait se loger sans avoir rien à craindre des hommes placés en haut. Un des assiégés proposa de suspendre à des chaînes de fer des pao à feu, et de les descendre le long du mur. Arrivés aux endroits qui étaient minés, les pao éclataient et mettaient en pièces les ennemis et les peaux de bœuf, au point même de ne pas en laisser de vestige.” There is another account of the shell in the Wu-pei-chi, published in 1621, but (as one gathers from Mr. Mayers291) it is so similar in the details that the two accounts cannot be taken as independent.They merely quote some common document or repeat some common tradition.

Like the Liber Ignium of Marcus Græcus, the Tung-Chien-Kang-Mu is not the work of one man or of one period. The original portions (the “Old Recipes” of Marcus) were written by Ssu-ma-kuang, 1019-86, and were named T’ung-Chien, or the “Mirror of History,” by the reigning Emperor.The book was brought up to date by Chu-hsi, 1130-1200, and was afterwards continued, with commentaries, by various writers, up to the seventeenth century.The above-quoted passage belongs to the commentators,292 and was written by some one whose date, name, and authority for his statement are alike unknown to us; but it was presumably written long after the event it records.

We have seen in Julien’s translation what the encyclopædist actually says, but what meaning did he intend to convey by his words?Did he mean to say the shell exploded?The passage may be divided into two clauses: in the first he explains generally the action of the ho-pao, and in the second he gives a particular example of its use.In the first clause he says that “no sooner was a light applied to it than the fire burst forth on all sides” (le feu éclatait de toute part): in the second clause he says, “the pao burst forth” (les pao éclataient).But the effect produced by the shell shows that this latter phrase is simply an elliptical way of saying, “the fire of the mixture contained in the pao burst forth.”On this point Reinaud and Favé are clear: “Les pao à feu éclataient s’applique aux éclats de la flamme qui sortait par les ouvertures,”293—holes in the shell which were probably numerous.Mayers agrees: the pao were lowered into the excavations, “when the fire burst out from them, utterly destroying every fragment of the hides,” &c.294 The Chinese writer was describing an incendiary, not an explosive. Gunpowder would have left in the hiding-place of the Mongols a tangled mass of charred human remains and scorched cowhide: only an incendiary could have destroyed its contents so that “not a vestige remained.” Father Gaubil and M. Berthelot acquiesce in this conclusion:295 Herr von Eomocki dissents from it.296

There is nothing in the military history of China in the thirteenth and fourteenth centuries to lead us to suppose that the Chinese possessed an explosive during that period.In 1255 Prince Hulágu had 1000 Chinese arbalisters in his pay to work his incendiaries,297 and it may be presumed that he would have learnt the secret of gunpowder from them if they had known it; but he possessed no explosive. Father Carpini, cir. 1250, states that when hard-pressed the Tartars had recourse to incendiaries, and Rashid ed-Din, in his history of Hulagu’s campaign of 1260, makes no allusion to explosives.298 The Chinese had only reached the same stage as Marcus Græcus in 1257: in this year they had Roman candles.299 During the siege of Siang-yang-fu, 1268-73, “Khubelai sent to his nephew Abaka, in Persia, for engineers skilled in making catapults, called mangonals300 by Marco Polo. Two such engineers were sent.”301 We have three different notices of this siege, Chinese, Persian, and Venetian, and “they all concur as to the employment of foreign engineers from the West,”302 but none of them mentions the use of explosives by either side. “The Chinese at that period,” says Sir John Davis, “were as little acquainted with firearms as Europeans.”303 When Chang-chi-ki’s fleet on the Kiang River was destroyed a few years afterwards by Atchu, it was by means of fire-arrows.304 In a word, during the thirteenth century, the Chinese made a free use of various incendiaries already noticed in the chapters on the Greeks and Arabs; and they seem to have made no progress in the manufacture of their missiles during the course of the fourteenth.305 Not until we reach the fifteenth century do we meet with gunpowder and cannon.

The Prince of Yen (afterwards the Emperor Yung Loh) is said to have been “defeated by firearms” at the battle of Tung Chang, 1401;306 but whether these arms were furnished with incendiaries or explosives is doubtful. The first trustworthy account of the use of artillery in China is given in the Kai-yii-tsung-kao, published in 1790, by Chao I, a man of considerable ability, and an accomplished antiquarian.He states that in the beginning of Yung Loh’s reign, 1407, cannon were acquired by the Emperor and employed during his campaigns in Cochin China.307 Whence came these cannon and their ammunition?

It is antecedently improbable that the Chinese either invented or manufactured them; for although the Chinese exhibited considerable intellectual power in some fields of investigation, they possessed little genius for mechanical or chemical inventions, and what mechanical ability they had was absorbed in other pursuits.When actually possessed of powder, they seem to have been incapable of making any improvement in its manufacture.“Si la poudre de Chine vaut mieux que la nôtre,” says Father Incarville, the ablest of the Jesuits I have consulted, “cela vien plutôt de la bonté des matières que du soin que les Chinois prennent de la faire bonne; ils la grainent très mal et ne savent pas la lisser.”308 “Whatever their claims as inventors,” says another writer, “it is certain that the Chinese have made no progress in the art” (of making gunpowder).309 Even their fireworks were no better than European fireworks.They did not employ stars, and their largest rockets had a length of only five inches, with an internal diameter of eight lines.310

There is no trustworthy evidence, so far as I am aware, to prove that the Chinese invented gunpowder.The statements of the Jesuits on this particular matter are worthless for reasons already given,311 and the popular Chinese tradition is deprived of any little weight it might otherwise have had by the disavowal of the invention by sober Chinese historians. On the other hand, we possess a number of facts which point to the conclusion that the Chinese obtained their first gunpowder and firearms from the West.

(a) It has been already pointed out that the mangonals used at the siege of Siang-yang-fu, 1268-73, were of western origin, and were worked by western engineers.

(b) The residence of the Polos in China, 1275-92, was by no means an isolated fact. They were but the pioneers of a considerable body of mechanics, missionaries, and merchants who continued their relations with 136the country for at least half a century.312 It may be doubted whether the merchants ever lost touch with China.

(c) Yung Loh, the first Chinese Emperor who possessed ts’iang, or cannon, had agents in Malay, Delhi, Herat, and Mecca,313 and his agent in the latter city could hardly have failed to hear of, and report on the use of firearms in the West. If such were the case, there was nothing to prevent the Emperor from obtaining small guns by land, or guns of any size by sea. There had been communication by land between China and Europe from the time of the early Roman emperors of the West.314 It was seriously interrupted, no doubt, by the disorders which broke out in China at the close of the ninth century, but it was re-established when they came to an end in the middle of the thirteenth.315 Mr. F. Hirth proves in his “China and the Roman Orient” that there was communication by sea between China and Europe at a very early date. Masudi speaks of the communication in his own time, the tenth century. The Arab and Chinese ships met, he says, at a port called Killat, half-way between Arabia and China, where they transhipped their 137cargoes.316 There was constant communication between China and the west coast of India in the first half of the fifteenth century. Abd ur-Razzak says the men of Calicut were bold navigators, and adds that they were called (in compliment) “the sons of China.” When John Deza destroyed the Zamorin’s fleet there, it was commanded by a Chinaman, Cutiale.317

(d) The Chinese made their charcoal from young shoots of the willow in the eighteenth century,318 and “as they seldom change anything,”319 they probably did so from the beginning. Twigs of willow are recommended for this purpose by Roger Bacon and Hassan er-Rammah (pp. 149, 24.)

(e) The Chinese strained the mother-liquor of their saltpetre through straw;320 so also did Whitehorne (A. , p. 20).

(f) They employed animal glue, or charcoal, to remove the insoluble impurities of the mother-liquor,321 just as Bacon did, if the explanation of the word “Phœnix” given in Chap. VIII. be accepted (p. 154).

(g) They incorporated the ingredients of gun138powder on a marble slab,322 as directed by Marcus Græcus, recipes 4 and 13, for incendiaries, and by Arderne for gunpowder (p. 177).

(h) They passed their rocket composition through a sieve of fine silk,323 the counterpart of Arderne’s “sotille couerchief” (Ib.) .

(i) They occasionally added camphor and mercury to their powder,324 like Kyeser and many other westerns (Romocki, i. 157).

(j) They called their powder yo, “the drug,” as did the Germans, Danes, and Dutch (p.6).

(k) They used varnishes,325 of the same family as the lutum sapientiæ, Marcus Græcus, recipe 1.

(l) An Encyclopædia, quoted in the Pai-pien, 1581, states that “on the walls of Si-ngan there was long preserved an iron chen-tien-lui = heaven-shaking thunderer, which in shape was like two cups”326—the shell of Valturio (p.221).

(m) Bits of metal, mitraille, were added to the charge of Chinese shells,327 after the manner prescribed in a German Firebook (Romocki, i. 189).

(n) The shell were loaded with the maximum charge that could be rammed into them,328 as directed in the same Firebook (ib.) .

(o) For repairing and closing the interstices of their built-up bombards, the Chinese appear to have used the same materials the Scotch used for Mons Meg; and it is noticeable that the Chinese preferred “western iron” for this purpose: “Ils emploient pour les confectionner du cuivre rouge.Dans les interstices apparents, ceux qui emploient du fer se servent de fer doux et malléable pour consolider (ces machines).Le fer de l’Occident est le meilleur qui puisse être employé à cet usage.”329 In the “Chronicles and Memorials of Scotland,” vol. vi. , for July 1459, we find: “For the repair of the great bombard at Edinburgh, brass, copper and iron, so much” [pro expensis factis circa eandem emendacionem (magni bumbardi ante castellum de Edinburgh) in ere, cupro et ferro].

(p) In 1520 the heavy guns of the Portuguese ships at Canton “attracted considerable attention, and soon acquired the name of ‘Franks.’...The Chinese seem to have subsequently availed themselves of the assistance of the Portuguese, and of their wonderful guns, to punish their own pirates”;330 a circumstance which recalls the expedition of Mahmoud of Gujarat against the Bulsar pirates in 1482 (p. 116). These “Franks,” we learn from the Wu-pei-che, “were of iron, 5 or 6 ch’ih (6 or 7 ft.) long.... Five small barrels (chambers) were used, which were placed (successively) inside the body of the piece from which they were fired off.”331

(q) The Chinese guns manufactured in 1618 were cast under the superintendence of the Jesuits at Peking.332

The general conclusion to be drawn from the foregoing inquiry is virtually Gibbon’s, which may be expressed in somewhat firmer language than he has used, since we possess many facts which were unknown to him.It is highly probable that the invention of gunpowder was carried from the West to China, by land or water, at the end of the fourteenth or the beginning of the fifteenth century, and “was falsely adopted as an old national discovery before the arrival of the Portuguese and the Jesuits in the sixteenth.”333


CHAPTER VIII

FRIAR BACON

Roger Bacon was born at Ilchester, in Somersetshire, in 1214, and died about 1294. If the dedication be authentic, his Epistola de Secretis Operibus Artis et Naturæ et de Nullitate Magiæ, the work with which we are chiefly concerned here, was written before 1249.334

Bacon attacks Magic in this book on the ground that science and art can exhibit far greater wonders than the alleged wonders of the Black Art, and to prove his point he enumerates, in the first eight chapters, a number of wonders which (he believed) art could produce and magic could not. Everything is sufficiently clear until we reach the ninth, tenth, and eleventh chapters, and they are unintelligible as they stand. Now, it is past belief that a man of commanding genius should have deliberately stooped to write page after page of nonsense. The three chapters, therefore, must have some meaning, hidden from us though it be.335

It is unquestionable that Bacon believed he possessed secrets of vast importance.At the close of Chapter VIII.he tells us by way of warning that he may resort (in the following chapters) to certain cryptic methods, “on account of the magnitude of his secrets” (propter secretorum magnitudinem); and, fearing that ordinary cryptic methods might be too transparent, he wraps up his secrets in an anagram in Chapter XI.

If Bacon were in possession of such secrets, why, it may be asked, did he not publish them openly?The reason was, as he explains repeatedly and at length, that he firmly believed scientific knowledge to be hurtful to the people.He protests in his works again and again against the diffusion of scientific information.“The crowd,” he says, “is unable to digest scientific facts, which it scorns and misuses to its own detriment and that of the wise.Let not pearls, then, be thrown to swine.”336 Elsewhere he says: “The mob scoff at philosophers and despise scientific truth. If by chance they lay hold upon some great principle, they are sure to misinterpret and misapply it, so that what would have been gain to every one causes loss to all.”337 “It is madness,” he goes on to say, “to commit a secret to writing, unless it be so done as to be unintelligible to the ignorant, and only just intelligible to the best educated”;338 and so much in earnest was he upon this point that he enumerates seven methods of baffling public curiosity. A secret may be concealed by making use of:—

(1) Symbols and incantations (characteres et carmina);

(2) Enigmatic and figurative words;

(3) Consonants only, without vowels;

(4) Letters from different alphabets;

(5) Specially devised letters;

(6) Prearranged geometric figures;

(7) Shorthand (ars notatoria).

These are among the means of veiling secrets, he tells us, and “ill will it betide him who reveals them.”339

Bacon was not singular in holding the doctrine of secrecy in matters of science, nor was it peculiar to the age he lived in: it arose ages before his birth, and was held for ages after his death.To any objections that might have been raised against the doctrine, philosophers would probably have replied with Subtle and Mammon:—

“...was not all the knowledge
Of the Egyptians writ in mystic symbols?
Speak not the Scriptures oft in parables?144
Are not the choicest fables of the poets,
That were the fountains and first springs of wisdom,
Wrapp’d in perpetual allegories?
.....
...Sisyphus was damned
To roll the ceaseless stone, only because
He would have made Ours common.”340

A man who boldly, even fiercely, avowed such opinions as Bacon’s, was bound in consistency to employ some cryptic method in recording his own secrets; and when we closely examine the course Bacon actually followed, we find that his practice was rigidly in accordance with his theory—in fact, too rigidly. Those steeped in the Cabbala of Alchemy in his own age may have grasped his meaning, but to those who came afterwards it was obscure, if not hidden. Even to the early copyists of his MSS. it was unintelligible. In one of the MSS. consulted by Professor Brewer, the scribe has written on the margin of Chap. IX. of the De Secretis:—Hæc sunt œnigmata; “these things are enigmas,” and enigmas they have remained for seven centuries.

The presence of two anagrams in Chap. XI. is sufficient of itself to arouse a suspicion that some cryptic method (of a different kind) has been employed in Chaps. IX. and X. , and this suspicion is strengthened by their whole manner and diction. Their style is involved, and their meaning (as they stand) unintelligible. Bacon passes from one subject to another in bewildering haste; from the unfinished description of one process to instructions about a second, which he leaves half told in order to plunge into a third. Among directions of seemingly primitive simplicity he interpolates such phrases as “catch my meaning if you can” (intellige si potes); “you will see whether I am speaking riddles or the plain truth” (videas utrum loquor œnigmata aut secundum veritatem); and he warns us that the purport of Chap.IX.may wholly escape us, unless we distinguish the (real from the apparent) meaning of his statements (in hoc capitulo decipieris, nisi dictionum significata, distinguas).These special peculiarities of Chaps.IX.and X.can be only explained by the use of some cryptic method, to which Bacon points plainly in Chap.VIII.He there names two cryptographers, Ethicus and Artephius, in connection with the seven cryptic methods already given, and he broadly hints that he may make use of some of these methods (forsan, propter secretorum magnitudinem, aliquibus his utar modis).It is needless to pursue the matter further: Chaps.IX.and X.are not, as they appear to be, nonsense, but the cryptic exposition of some secret which Bacon believed to be of great value.

Few of the difficulties we experience in investigating the meaning of these three chapters were felt by the correspondent to whom the Friar addressed them as letters. He and Bacon had long been in communication with each other, and as both knew the substance which formed the real subject of these letters, Bacon was at liberty to call it chalk or cheese or what he willed. They appear to have had some system of numerical signs, the meaning of which is lost to us. The tenth chapter begins with a reference to a letter received by Bacon from his correspondent in the year 602 A.H., and as the date is given in words, not figures, it can hardly have been mistaken by the scribes. Now the year 602 A.H. began on 18th Aug. , 1205 A.D., nine years before Bacon was born.The number 602, therefore, is either a blind, or a conventional sign or key.The same may be said of the number 630 in the first line of Chap.XI., and of the totally unnecessary 30 which occurs just before the anagram in the same chapter—“(sit) pondus totum 30,” i.e. let the total weight be 30. No one can have ever wanted to know the total weight of the mixture in question: every one wanted to know the proportions of the ingredients. Our ignorance of these signs creates difficulties for us which did not exist for the initiated in Bacon’s time.

As will be shown hereafter, Bacon has occasionally availed himself in Chaps.IX., X., and XI.of Nos.2 and 4 of the cryptic methods he has given us; but these methods apply only to words and phrases, and the wily Franciscan did not think it necessary to allude to the more general method by which he set forth so much of his statement as is contained in Chaps.IX.and X.We cannot discuss cryptograms here: suffice it to say that some of the early methods were too tedious and some too complicated to be employed throughout the whole length of Chaps. IX. and X. The method he appears to have adopted (as the result will show) was that known long afterwards as the “Argyle cipher,” of which the following letter from Thackeray’s “Esmond” is an example. The real contents of this letter are the phrases within brackets:—

“[The King will take] medicine on Thursday.His Majesty is better than he hath been of late, though incommoded by indigestion from his too great appetite.Madame Maintenon continues well.They have performed a play of Mons.Racine at St.Cyr....[The Viscount Castlewood’s passports] were refused to him, ’twas said; his lordship being sued by a goldsmith for Vaisselle plate and a pearl necklace supplied to Mademoiselle Meruel of the French Comedy. ’Tis a pity such news should get abroad [and travel to England] about our young nobility here.Mademoiselle Meruel has been sent to Fort l’Evesque; they say she ordered not only plate, but furniture, and a carriage and horses [under that lords name], of which extravagance his unfortunate Viscountess knows nothing.

“[His Majesty will be] eighty-two years of age on his next birthday....All here admired my Lord Viscount’s portrait, and said it was a masterpiece of Rigaud.Have you seen it?It is [at the Lady Castlewood’s house in Kensington Square].I think no English painter could produce such a piece.

“Our poor friend the Abbé hath been to the Conciergerie [where his friends may visit him They are to ask for] a remission of his sentence soon.

“[The Lord Castlewood] has had the affair of the plate made up and departs for England.

“Is not this a dull letter?...”—Bk.III.Chap.8.

This letter shows very clearly that the Argyle steganogram is one which it is almost impossible to solve without the key, unless the matter to which it relates is known beforehand341—a difficulty to which Bacon’s correspondent was not exposed, for he knew well what the subject of Bacon’s communication would be. Here, then, we should have found ourselves left in utter darkness were it not for a ray of light afforded by Chap. XI. There we are told that something, in connection with saltpetre and sulphur, produces an explosion,342 and we know that this something is charcoal. Since Chap. XI. is concerned with the composition and effects of this mixture, what more probable than that Chaps. IX. and X. should deal with its ingredients separately—or at least with saltpetre and charcoal, for sulphur was so simple and common a drug that Bacon was not likely to dwell upon it? Now, towards the end of Chap. X. Bacon speaks without disguise of charcoal under the name of the wood from which it is made,343 and mentions the two trees, hazel and willow, which give the best. He significantly adds that when charcoal is added to proper proportions of certain other substances, something noteworthy happens (si vero partes virgulti coryli aut salicis multarum justâ rerum serie apte ordinaveris, unionem naturalem servabunt: et hoc non tradas oblivioni, quia valet ad multa). Since, then, charcoal is one of the subjects of these two chapters, it becomes all the more probable that saltpetre forms another. Bacon was writing but a few years after its discovery, and nothing could be more natural than that the great alchemist should bestow his attention upon the preparation of the new salt. This hypothesis explains simply and completely the most remarkable feature of Chaps. IX. and X. —the series of common and well-known alchemical terms and phrases, referring undoubtedly to the preparation of either saltpetre or gold, which are scattered and hidden among incoherent maunderings about chalk and cheese, philosophic eggs and Tagus sand, Adam’s bones and aperient medicine. But how could the preparation of gold lead up to the recipe for an explosive with which Chap. XI. ends? There is no connection whatever between gold and gunpowder, while the connection between saltpetre and gunpowder is of the closest possible kind. Before giving a recipe for gunpowder it was absolutely necessary for Bacon to describe the method of refining the lately discovered saltpetre, without which his recipe would have been worthless; and he took advantage of the close similarity between the alchemical preparation of gold and the refining of saltpetre to conceal the real import of his tract.By the title of the last three chapters—“On the Method of Making the Philosopher’s Stone”—and by constantly harping on gold, he endeavoured to distract and deceive his ordinary readers, leading them to believe that he was writing about gold when he was really treating on saltpetre.

The unnamed substance saltpetre, then, is the principal subject of Chaps.IX.and X., and our course is clear.We must treat these chapters as we should treat Col.Esmond’s letter were the brackets omitted344-we must make shift to insert them.We must bracket together the phrases and sentences relating to the real subject of these chapters, the familiar alchemical expressions relating to saltpetre.On doing so we shall find a connected and rational method of refining the salt.

In the following reproduction of Chaps. IX. and X. I have used the Esmond brackets, but I have not thought it necessary to reprint all the padding which connects them. All omissions, however, are shown by dots. No word of the bracketed phrases has been changed, altered, added, or suppressed, nor has the order of the words been altered. Nothing has been done but to indicate by brackets the misleading interpolations.

Cap.IX.

De modo faciendi ovum philosophorum.

Dico igitur tibi quod volo ordinari quæ superius narravi exponere, et ideo volo ovum philosophorum et partes philosophici ovi investigare, nam hoc est initium ad alia.[Calcem345 igitur diligenter] aquis alkali et aliis aquis acutis [purifica], et variis contritionibus cum salibus confrica346 et pluribus assationibus concrema, [ut fiat terra pura penitus liberata ab aliis elementis347], quam tibi pro meæ longitudinis statura dignam duco.Intellige si potes, quia proculdubio erit compostum ex elementis, et ideo est pars lapidis qui non est lapis,348 et est in quolibet homine et in quolibet loco hominis....Deinde oleum ad modum crocei casei et viscosi accipias,349 primo ictu insecabile, cujus tota virtus ignea dividatur et separetur per distillationem; [dissolvatur350 autem in aqua] acuta temporatæ acuitatis [cum igne levi,351 ut decoquatur quatenus separetur pinguedo sua352], sicut pinguedo in carnibus....Melius est tamen ut decoquatur in aquis temporatis in acuitate [donec purgatur et dealbetur].Aqua vero salutaris exaltatio fit ex igne secco vel humido; et [iteretur distillatio] ut effectum bonitatis recipiat sufficienter [donec rectificetur: rectificationis novissima signa sunt candor et crystallina serenitas353]; et cum cætera354 nigrescunt ab igne hoc albescit, mundatur, serenitate nitescit et splendore mirabili. [Ex hac aqua] et terra sua argentum vivum generatur, quod est sicut argentum vivum in mineralibus, et quando incandidit hoc modo [materia congelatur.Lapis vero Aristotelis, qui non est lapis, ponitur in pyramide in loco calido355].

Cap.X.

De eodem, sed alio modo.356

Transactis annis Arabum sexcentis et duobus, rogasti me de quibusdam secretis.[Accipe igitur lapidem357 et calcina ipsum] assatione leni et contritione forti sive cum rebus acutis. [Sed in fine parum commisce de aqua dulci; et medicinam laxativam358 compone de] septem rebus ...vel de quot vis; sed quiescit animus meus in [duabus rebus quarum proportio melior est in sesquialtera proportione359] vel circiter, sicut te potest docere experientia.[Resolve360] tamen aurum361 [ad ignem et mollius calefac]. Sed si mihi credas, accipias unam rem, hoc est secretum secretorum, et naturæ potens miraculum.[Mixto362 igitur ex] duobus, aut ex pluribus, aut [Phœnice363], quod est animal singulare, [adjunge, et incorpora per fortem motum; cui si liquor calidus adhibeatur,364 habebis propositum ultimum365].Sed postea cœlestis natura debilitatur si aquam infundis ter vel quater.Divide igitur, debile a forti in vasis diversis,366 si mihi credas. [Evacuato367 igitur quod bonum est.] Iterum adhibe pulverem, et aquam quæ remansit diligentur exprime, nam pro certo partes pulveris deducet non incorporatas.Et ideo illam aquam per se collige, quia pulvis exsiccatus ab ea habet incorporari medicinæ laxitivæ....[Regyra cum pistillo,368 et congrega materiam ut potes, et aquam sepera paulatim] et redibit at statum.Quam aquam exsiccabis, nam continet pulverem369 et aquam medicinæ, quæ sunt incorporanda sicut pulvis principalis.

The phrases within brackets, which constitute the recipe, will be found collected together and translated in their proper place in Chap.II.

It would be presumptuous to suggest that the foregoing solution of Bacon’s Argyle steganogram is free from error; but I may express a hope that the errors are few and inconsiderable—a hope founded upon the completeness of the method disclosed. Whatever errors may be found, there can at least be little doubt that the occult meaning of the two chapters is the refining of saltpetre. One sentence, two sentences, or even more, might be selected from the description of almost any long chemical process which would apply with equal propriety to some other process; but it is incredible that a long, varied, and connected process, such as the refining of saltpetre, could be extracted by any method from documents professedly devoted to the philosopher’s stone, unless this process had been designedly inserted there, piecemeal or whole, by the author himself. For the figurative interpretation given of two or three words and phrases, we have Bacon’s own warrant. He threatened to employ verba œnigmatica and verba figurativa, and he has been taken at his word; with the result that a rational chemical process has been extracted from what was previously unintelligible.

Having said all he had to say about the ingredients, Bacon proceeds to deal with their mixture in Chap.XI., in which he employs a cryptic method without disguise:—

Cap.XI.

De eodem, tamen alio modo.

Annis Arabum 630 transactis, petitioni tuæ respondeo in hunc modum....Item pondus totum 30.Sed tamen salis petræ370 LURU VOPO VIR CAN UTRIET sulphuris; et sic facies tonitruum et coriscationem, si scias artificium. Videas tamen utrum loquor œnigmatate aut secundum veritatem.

Omitting the anagram, the translation is:—“In this 630th year of the Higira I comply with your request as follows....Let the total weight (of the ingredients) be 30.However, of saltpetre ...of sulphur; and with such a mixture you will produce a bright flash and a thundering noise, if you know ‘the trick.’You may find (by actual experiment) whether I am writing riddles to you or the plain truth.”

The mention of the flash and the noise indicates at once that we have here to do with an explosive. But saltpetre and sulphur when mixed together do not form an explosive. We may feel sure, therefore, that the name of the one substance necessary to convert the incendiary mixture of saltpetre and sulphur into an explosive, namely charcoal, is included under some form in the anagram—either as carbo, or the name of the wood from which it is made. The et sic facies of the second clause shows that there must necessarily be in the first clause, and consequently in the anagram, some verb in the imperative mood, such as mix or takeWe may expect a word for a weight (libræ, unciæ, &c.) , or the word partesAs regards the proportions, the earliest we are acquainted with approximate more or less closely to 2:1:1, Arderne’s recipe being merely a laboratory recipe.The proportions of the ingredients, therefore, if included in the anagram, will probably not differ much from 2:1:1.

Rearranging the letters of the anagram, we get—

RVIIPARTVNOUCORULVET,

or since U and V are interchangeable,

R. VII PART. V NOV. CORUL. V ET; i.e.
r(ecipe) vii part(es), v nov(ellæ)371 corul (i), v et.

The whole passage in the original therefore reads:—

“sed tamen salis petræ recipe vii partes, v novellæ coruli, v et sulphuris,” &c.; that is—

“but take 7 parts of saltpetre, 5 of young hazel-wood, and 5 of sulphur,” &c.;

i.e. 1-2/5 sp. , 1 char. and 1 sulph.

R. was the common contraction for recipe, and may be seen in Marcus Græcus’ first recipe (Berthelot’s text). Nov. Corul. could have presented no difficulty to Bacon’s correspondent, seeing that in the previous letter, Cap. X. , Bacon had spoken of virgulti coryli. There he writes coryli: in his Opus Majus he wrote coruli (ii. 219, Bridges ed.) .

The second anagram (in Greek, Roman, and Anglo-Saxon letters) seems to be a note to the first and need not detain us, since we have already got the names and proportions of the ingredients.

In deference to those readers who may reject the preceding attempts to read Bacon’s riddles, we now proceed to show, on grounds independent of the steganogram and anagram, that Bacon was in possession of an explosive.

The igneous bodies of which Bacon speaks fall into two classes.The first class are incendiaries.“Incendiaries,” he tells us, “may be made from saltpetre, or petroleum, or maltha,372 or naphtha, mixed with other substances.... To these are allied Greek fire and many other incendiaries373....(Burning) maltha, if thrown upon an armed soldier, will cause his death....It is difficult to extinguish, water being useless for this purpose.”374

But side by side with these passages we find descriptions of igneous compositions of a totally different kind. “There are other natural wonders. We can produce in the air sounds loud as thunder and flashes bright as lightning—nay, even surpassing the powers of nature.A small quantity of (a certain) composition, no bigger than one’s thumb, will give forth (on ignition) a deafening noise and a vivid flash.”375 We have, too, the passage, already quoted, in the eleventh chapter, where he says that saltpetre and sulphur and something else give forth (on ignition) “a thundering noise and a vivid flash.”376 Again: “Some compositions (when ignited) make an unbearable noise.... No other sound can be compared with it. Others produce flashes more fearful to behold than real lightning.... We may exemplify these effects with a child’s toy which contains within it a quantity of saltpetre (mixture) the size of one’s thumb. In the bursting of this bauble, made only of parchment, there are given forth a noise louder than the mutterings of thunder and a flash brighter than the brightest lightning.”377 It will be evident on a moment’s consideration that the charge of this toy must have been an explosive.Had it been an incendiary, the paper would have taken fire long before the pressure of the gases generated by the combustion had increased sufficiently to burst the case, and there would have been no loud report.

The consequences of igniting these two classes of composition are described so clearly as to preclude all possible misunderstanding:—the incendiary burns fiercely, while the other mixture gives forth a bright flash and a loud noiseIn the latter case, Bacon was describing an explosion, and, as he has elsewhere spoken of saltpetre, charcoal, and sulphur, the reasonable conclusion is that the explosive was gunpowder.

It has been said that the first of the foregoing passages—“there are other natural wonders,” &c.—describes a rocket.As everybody knows, a rocket in its flight makes a whizzing noise and is followed by a trail of heated gas and sparks.The whizzing noise can only be compared to thunder by a total disregard of fact, for no sound resembles thunder less.Does thunder whizz?The fiery trail can only be called a flash by an equal disregard of fact: it gives a continuous light.But if the rocket carries a bursting charge which explodes in mid-air, the explosion may, with venial exaggeration, be said to produce a flash like lightning and a noise like thunder. Bacon was alluding to a bursting charge consisting of an explosive, and that explosive was gunpowder.

Was Bacon aware of the projective force of gunpowder?There is nothing in his works (so far as I am acquainted with them) which suggests that he was.He knew that gunpowder exploded, and he believed that an army might be either actually blown up by it, or put to flight by the terror inspired by its explosion;378 but he seems to have gone no further. He experimented, probably, with very small quantities of it; and the behaviour of gunpowder when fired in large quantities under pressure is so unlike its behaviour when fired in small quantities in the open air, that its projective force could neither have been predicted by abstract reasoning nor realised by even his powerful imagination.

If a surmise be permissible, Bacon did not invent, he discovered gunpowder. Experimenting with some incendiary composition, prepared with pure instead of impure saltpetre, the mixture exploded unexpectedly and shattered all the chemical apparatus near it, thereby laying the foundation of the mediæval legend about the destruction of the Brazen Head. This suggestion, if correct, only adds one more item to the long list of accidental discoveries.The laws of the structure of crystals were discovered by Haüy’s accidentally letting fall a piece of calc-spar, which broke into fragments.Malus, chancing to look through a double refracting prism at the light of the setting sun, reflected from the windows of the Luxembourg Palace, discovered the polarisation of light.Galvani discovered galvanism by mere accident.The decomposition of water by voltaic electricity was accidentally discovered by Nicholson in 1801.

However, whether as discoverer or inventor, Roger Bacon made and fired the first gunpowder.It fell to the lot of a persecuted English monk to fulfil the prophecy of Prometheus, that in the latter day there should appear “a wondrous being, who should call forth flashes brighter than lightning and sounds louder than thunder.”379


PART II
THE PROGRESS OF AMMUNITION


CHAPTER IX

ANALYTICAL TABLE OF AMMUNITION

To those who are not professional gunners, Artillery ammunition may seem at the first glance to be a hopeless and chaotic jumble of endless stores. This is no doubt partly owing to the necessary multiplicity of the stores, but far more to the absence (in most books and lists) of any synoptic digest, or plan, showing at one view the classification of the whole and the pedigree of each article. To remedy this want the following table has been drawn out, showing the stems to which belong the various kinds of ammunition we are concerned with here. Many trees of a somewhat similar nature might of course be constructed, fuller and more scientific than Table IV. ; but it has the advantage of being very simple and sufficiently comprehensive for the present purpose.

Strictly speaking, the table ought to have included all the ammunition in use between the introduction of cannon and the introduction of rifled arms in the middle of the last century; but the principle has not been pushed to its limit, nor was it necessary to do so in order to enable the reader to form a clear notion of the broad divisions of ammunition. Machines lingered on for some time after the invention of cannon: in fact they were used at the siege of Constantinople in 1453. Their stone balls and pots of Greek fire are not formally included, because what is said of stone shot for guns in Chap. XIII. applies equally to stone balls for machines, and all that it was considered necessary to say about Greek fire has been said in Chap. III. Electric fuzes, and some few species of ammunition of little interest or value, have been also omitted, because their inclusion would have increased the size and complexity of the table without any counterbalancing advantage.

Ammunition for rifled guns has not been included, because it is for the most part an adaptation and development of smooth-bore ammunition.

TABLE IV

AMMUNITION
































Hand ──────────────────────────────┌Fire Arrows, &c.
│Grenades, Incend.
└and Explos.
Automatic ───────────────────────────[ Rockets, War
Cannon ──










Charge ─────────────────────[ Gunpowder
Projectiles ─










Shock ────

│  Round
│  Shots ──



   Darts, &tc.
┌Stone
│Iron
│Bronze
└Lead
   Case
   Shrapnel
Incendiary ─────────┌Hot Shot
│Fireballs
│Shell
└Carcasses
Explosive ─────────┌Fireballs
└Shell
Igniters ───────────────────────




│  Fuzes ──

   Hot Wires
   Priming Powder
   Matches, Slow and Quick
   Portfires
┌Tubes
│Time
│Percussion
└Concussion
signals ──────────────────────────────┌Rockets
└Fixed Lights

CHAPTER X

HAND AMMUNITION

Fire-Arrows and Fire-Pikes

The system of attaching incendiaries to arrows, lances, &c. , survived the introduction of gunpowder and died a lingering death. In November 1588 the Government ordered the purchase of “20 Slurr Bows at 25s. each, and 20 doz. of firework arrows for the said slurr bows at 5s. the doz.”380 From a list of naval stores for the year 1599, it would appear that fire-arrows were discharged from long-bows as well as slur-bows:—

“Slurbowe arrowes with firewoorkes, 184;
inde 19 without firewoorkes.
Longbowe arrowes with firewoorkes, 4 shef.1 arr.”381

Hansard gives a plate of an English archer, 1250, with spicula ignita, or arrow tipped with wildfire.382 Sir R. W. Payne-Gallwey gives a sketch of a slur-bow. It is a cross-bow, with a barrel and a single string which works in two slits cut in the sides of the barrel.383

Fire-lances were used, perhaps for the last time, at the first siege of Bristol, 1643.There, Prince Rupert tells us, “Captain Clerk, Ancient Hodgkinson, and some others running in upon (the Royalists) with fire-pikes, neither men nor horses were able to endure it.The fire-pikes did the feat.”384

Fire-arrows had a longer spell of existence, and were used by the Chinese against the French in 1860.385

Hand Grenades

Incendiary hand grenades are of great antiquity.We have seen that earthenware grenades were used at the siege of Salonika,386 904. Towards the end of the thirteenth century Hassan er-Rammah describes grenades made of bark, papyrus, or glass—materials well adapted to break up on impact and scatter about their burning contents.387 They were used at the passage of the Lys in 1382:—“Adonc vinrent arbalêtriers et gens de pied avant; et si en y avait aucuns qui jetait de bombardes portatives et qui traioient grands quarriaulx empennés de fer,” &c.388 By a common figure of speech Froissart calls the grenade a bombard, just as the author of the “Avowing of Arthur” calls a shot a gun:—

“...there came fliand a gunne
And lemet as the leuyn....”389

(A gun came flying by and gleamed like lightning.)

The plate from the MS. of Kyeser’s Bellifortis, 1405, given by Herr von Romocki (i.169), shows three projectiles which were unquestionably hand grenades.Figs.25 and 30 are provided with spikes, like crow’s-feet.390 Fig. 27 is a flask or bottle of the same family as Hassan’s grenades, and was probably made of earthenware. It was by an explosive earthenware grenade that Del Vasto was severely wounded in 1528, during the sea-fight between the French and Spaniards off Cape Campanella.391 The Comte de Rendan was killed by a grenade of unknown construction at the siege of Rouen, 1562,392 and grenades were freely used at the siege of Famagusta, 1572. Du Bellay tells us that grenades were made in large quantities at Arles in 1536.393 As it is improbable that iron grenades could have been turned out in large quantities in the first half of the sixteenth century, we may conclude that they were either earthenware or some form of brittle brass. This is rendered probable by Whitehorne’s remarks on the subject. He says that “earthen bottles or pottes,” filled with incendiary or explosive matter, had been formerly used; but he recommends “hollow balles of metal, as bigge as smal boules and ¼ in.thick, cast in mouldes and made of 3 partes of brasse and 1 of tinne.”Their charge consisted of “3 partes serpentine, 3 partes fine corne pouder, and 1 part rosen.”A little fine corned powder was used as priming; and he directs the grenades to be “quickly thrown,” as they will almost immediately “breake and flye into a thousand pieces.”The want of a proper fuze rendered their use so dangerous that he advises trials to be made with them, “to see how long they will tarry before they breake.”394

Major Ralph Adye mentions that grenades were supposed to be capable of being thrown 13 fathoms, or 26 yards.395

Evelyn says in his “Diary” that on 29th June 1678, he saw at the Hounslow Camp certain soldiers “called granadiers, who were dexterous in flinging hand-granades.” In the Archæological Journal, xxiii., 22, will be found a plate “Blow your Match,” after a sketch by Lens, “limner to His Majesty” George II., which represents a grenadier of the 1st Regiment of the Guards in 1735, grenade in hand.


CHAPTER XI

WAR ROCKETS

Incendiary rockets were known in the East from an early time, and they are frequently mentioned at later periods; but we are told so little about the loss they inflicted upon an enemy that one is inclined to suspect their effect was confined to wounding a few men and frightening elephants and horses. They are said to have been used by the Chinese against the Tatars in 1232.396 The Malzufat-i Timuri and the Zafarnama leave us in doubt whether Timur’s rockets were used or not at the great battle of Delhi, 1399.397 The effect produced by a single rocket led to the fall of the strong fort of Bitar in 1657, but this result was purely accidental. The commander of the fort, foreseeing that an assault would be made upon one of the bastions which had been much damaged by artillery fire, ordered a hole to be dug in it and filled with gunpowder, grenades, &c. , intending to blow up the besiegers when they entered. Just before the assault was made, one of the besiegers’ rockets fell by accident into this pit and fired its contents, creating thereby so much loss and confusion among the garrison that the place was carried after a short struggle by Aurangzeb’s troops.398

In the West, rockets were employed as early as 1380,399 if not earlier; but they were never looked on with favour, and they appear to have been seldom, if ever, used between the earlier part of the fifteenth century and our bombardment of Boulogne with Congreve rockets in 1806. Dunois’ capture of Pont Audemer in 1449 was a consequence of a fire that broke out in the town; but the fire appears to have been caused by a hand-grenade or fire-arrow, not by a rocket. However, the exact meaning of the word fusus is so doubtful that the matter is not worth pursuing.400

Towards the close of the eighteenth century rockets were almost forgotten in the one European city where they were most likely to have been remembered—Constantinople.In 1783-84 Tipu Sultan sent a mission to the Sultan of Turkey, and of the presents which they offered “none were so much admired as the Rockets, of which there were none in that country.”401

We find traces of the employment of rockets, both incendiary and explosive, in India in this very year, when some “rocketeers ...threw confusion and dispersion into the masses of the Mahrattas.”402 Nothing can be more probable: the army of the Mahrattas was an army of cavalry, and horses are terrified by fire in any form. The Indian rocket at this time had a tube of 8” length and 1.5” diameter,403 and it does not appear to have been a very effective missile. Speaking of our loss during the attack on Seringapatam, 1792, Colonel Dirom says: “(We had) a good many wounded, though in general but slightly, chiefly by rockets.”404 Within the next few years, however, rockets were much improved, and an eye-witness speaks of the use of “rockets of an uncommon weight” at the siege of Seringapatam, 1799.405 These were undoubtedly explosive rockets, for Col. Gerrard saw one of them kill three and wound four of our men.406

Shortly after the taking of Seringapatam the Ordnance Office applied to the Laboratory, Woolwich Arsenal, for the services of some one who understood the manufacture of war rockets. The Laboratory referred the Ordnance to the East India Company, who replied that they knew of no one who possessed such knowledge.407 This state of things led Colonel Congreve to turn his attention to the subject. It is not correct to say that he brought rockets from India,408 for he never was there. He knew of course—the whole world knew—that war rockets were employed there: “I knew that rockets were used for military purposes in India, but that their magnitude was inconsiderable and their range not exceeding 1000 yards.”409 His object was to make large incendiary and explosive rockets with a range of 1000-3500 yards, and he succeeded, perhaps, as well as the materials at his disposal permitted. He never laid claim to the invention of war rockets: “What I have done,” he says, “towards the perfection of this weapon is as much my own as if the original invention of rockets in general were mine.”410

Oberst-Lieutenant Jähns tells us that, from a certain point of view, the Emperor Caligula’s rockets were on a level with those of Congreve.411 It may be doubted, however, whether Caligula’s rockets would have produced the same effect as the Congreve rockets at Copenhagen in 1807,412 or at Walcheren in the same year, when the French Commandant, General Monnet, protested against their use.They did good service at the passage of the Adour in 1813, and at the battle of Leipsig, where Captain Bogue, who commanded the Rocket Brigade, was killed.A French infantry brigade in the village of Paunsdorf, “unable to withstand the well-directed fire (of rockets), fell into confusion, began to retreat,” and ultimately surrendered to the Rocket Brigade.413 Two years afterwards, at Waterloo, the rockets, under Sergeant Daniel Dunnett, proved very effective.

Of late years rockets have fallen into disrepute everywhere, owing to radical defects explained by Captain C.O.Browne, R.A.;414 and their use is unlikely to be revived until the chemists make some unforeseen and astonishing discovery.


CHAPTER XII

GUNPOWDER

The oldest recipe for gunpowder is Roger Bacon’s. If the solution of his anagram which I have ventured to propose be accepted, the proportions of the ingredients in 100 parts were:—

Saltpetre.Charcoal.Sulphur.
41.229.429.4

The French recipe of 1338 being incomplete (Table VIII.), the next complete recipe for gunpowder is that given in the MSS.of Dr. John Arderne of Newark, who began to practise as a surgeon before 1350:415— “Pernez j. li. de souffre vif; de charbones de saulx (i. weloghe) ij. li.; de saltpetre vj. li. Si les fetez bien et sotelment moudre sur un pierre de marbre, puis bultez le poudre parmy vn sotille couer-chief; cest poudre vault à gettere pelottes de fer, ou de plom, ou d’areyne,416 one vn instrument qe l’em appelle gonne.”This gives in 100 parts:-

Saltpetre.Charcoal.Sulphur.
66.6´22.2´11.1´

The word gonne, in the sense of cannon, must have been commonly known during the last quarter of the fourteenth century; for Chaucer uses it with this meaning in the “Hous of Fame,” iii.553, cir.1380—

“As swift as pelet out of gonne,
Whan fyr is in the poudré ronne;”

and Langley uses it with the same meaning in the C text of his “Vision of Piers Plowman,” xxi. 293, cir. 1393:—

“Set bows of brake and brasene gonnes,
And shoot out shot enough his sheltrums to blend.”

Now the explanatory phrase, “qe l’em appelle gonne,” shows that gonne was but little known when the above recipe was written. We may therefore date it at 1350.

It will be observed that down to the word marbre, the recipe is a literal translation of a receipt for rocket composition given by Marcus Græcus.417 Yet the two powders, although made of nominally the same ingredients in the same proportions, did not produce the same effects when fired; for gunpowder will not propel a rocket, and rocket composition will not project a cannon-ball. The difference in their effects was probably due to the researches of Roger Bacon, who had discovered the importance of using pure saltpetre and of thoroughly incorporating the ingredients.It is improbable that Arderne’s recipe represents the powder used in the cannon of his time.Its proportions are so entirely out of keeping with those of the French powder of 1338 (Table VIII.)and those of Whitehorne’s powder of 1560 (Table VII.), that we may regard it as no more than a laboratory receipt.

It needed but little experience to show how far short of perfection serpentine powder fell.

While the fouling of dry, well-incorporated powder is comparatively trifling, a damp or slow-burning powder, such as serpentine, leaves a much larger residue.The consequence was that, after a few rounds, it was exceedingly difficult to reload small arms, a considerable part of the loose, floury charge sticking to the fouling.418 The remedy for this evil was the use of cartridges. Whitehorne mentions “bagges of linnen or paper” for the charges of cannon in 1560,419 and in 1590 Sir John Smythe speaks not only of cartridges, but of composite cartridges for small arms—“cartages with which (musketeers) charge their peeces both with powder and ball at one time.”420

There are payments for talwood (faggots) “for drying powder” in the English store accounts 1372-74,421 and in 1459 the Scotch Government were endeavouring to keep their powder dry by storing it in waxed canvas bags.422 An official recommends the English Privy Council in 1589 to sell certain “bad powder” at Dorchester, adding, “the longer it is kept the worse yt wilbe.”423 The Navy were of course, then and always, the chief sufferers from damp powder. Serpentine powder, Sir Henry Manwayring tells us in 1664, was never taken to sea (after big guns had become strong enough to stand corned powder) “both because it is of small force, and also for that it will, with the aire of the sea, quickly drie and lose its force.”424 But corned powder was by no means proof against damp. In the action fought off Grenada in July 1779, Bishop Watson says “the English shot would not reach” the French. The powder, it was found, “had concreted into large lumps, in the middle of which the saltpetre was visible to the naked eye.”425 Between the years 1790 and 1811, 189,000 whole barrels of powder, “which had formed into lumps from the damp of H. M.’ s ships of war,” and had consequently been returned into store as useless, were rendered serviceable in the Government powder factory.426

Being merely a loose mechanical mixture of three substances with different specific gravities, serpentine powder had a tendency, when shaken in transport, to resolve itself into three strata, the heaviest substance (the sulphur) settling down to the bottom, and the lightest (the charcoal) remaining at the top.This meant, practically, that on coming into the enemy’s presence the ingredients had to be incorporated afresh.To save trouble, and to avoid the danger of a second mixing, it was for a long time customary to carry the ingredients separately,427 or, at least, to carry the charcoal apart from the saltpetre and sulphur. There was another argument, however, in favour of this course. While serpentine powder, however tightly secured, gave out a large quantity of impalpable dust which might cause an explosion at any moment, no explosion was possible so long as the ingredients were kept asunder. But whatever was the reason for resorting to such an expedient, it is evident that the remedy was nearly as bad as the disease.

Serpentine powder had another drawback,—it required very careful ramming home.“Thrust the pouder home fair and softly,” says Whitehorne.428 “The powder rammed in too hard and the wad also,” says Bourne in 1587, “it will be long before the peece goeth off.... The powder too loose ... will make the shotte to come short of the mark.... Put up the powder with the rammer head somewhat close, but beat it not too hard.”429 By beating it too hard the interstices between the particles through which the flame permeated the charge were diminished in size, and if beaten sufficiently hard the mixture tended to become a solid which burned away without exploding. Finally, the combustion of serpentine, at the best, was so slow that a large volume of its gas escaped wastefully through the vent.

These evils were in some cases much lessened, and in others quite got rid of by the gradual introduction of corned powder, which is mentioned in 1429 in the Firebook of Conrad von Schongau,430 and was in use for hand-guns in England long before 1560. Corned powder (1) deposited less fouling than serpentine; (2) it was less susceptible to damp, especially after the introduction of glazing;431 (3) it did not resolve into strata in transport; (4) it gave out less dust; (5) it was much less affected by hard ramming; (6) owing to the larger interstices between the grains,432 it burned so quickly that there was little or no waste of gas through the vent, and it was consequently so strong that 2 lbs. of corned did the same work as 3 lbs. of serpentine powder.433 It was, in fact, too strong for cannon for a long period: Chemistry had outrun Metallurgy.“If serpentine pouder should be occupied (used) in handguns,” says Whitehorne, “it would scant be able to drive their pellets434 a quoit’s cast from their mouths; and if handgunne (i.e. corned) pouder should be used in pieces of ordnance, without great discretion, it would quickly break or marre them.”435 Here we have the cause which necessitated the general retention of serpentine powder for cannon until the first half (or middle) of the sixteenth century, after which it is heard of no more except for secondary purposes, such as priming, &c. We must not overlook the importance of Whitehorne’s remark. He was an educated man of sound, practical sense, who had been a student of Gray’s Inn, and whose experience was not confined to the English Artillery, for he had seen service in the Low Countries. What he says is a sufficient safeguard against inferring too much from Schongau’s mention of corned powder in 1429. It came slowly into use for hand-grenades and small arms in the fifteenth century; but no country then possessed cannon strong enough to stand its explosion, and it did not come into general use for another century.

In addition to its being at first too strong for big guns, corned powder had the disadvantage of being dearer than serpentine.The latter was sold in 1569 at £80 the last (2400 lbs.); the former in 1570 at £90.436 The following Table gives the price of English powder at various times:—

TABLE V.

Price of English Gunpowder per lb.

Nature.  1347137814624371482438156943915784401588441159544216954431865444
 d.d.d.d.d.d.d.d.d.d.
Serpentine13-3/413-2/312108...............
Corned............910121310-3/47
Fine...............11............


The remarkable uniformity in the prices of English powder has been noticed by Prof. Rogers in his “History of Agriculture and Prices,” iv. 631. He thinks that “fine” powder meant priming powder, because infantry soldiers were usually served out with 1 lb. “common” (corned) powder and ¼-lb. “fine” powder. It doubtless did at one time; but the term was applied to all small-arm powder eventually.445

The prices of the first two powders have necessarily been calculated.The price of charcoal in 1347 was .013d.per lb.; in 1378 it was .02d.446 The prices of sulphur and saltpetre in 1347 were 8d. and 18d. per lb. respectively;447 in 1378 they were (for large quantities) 4d. and 20d. respectively.448 From an English MS., quoted by the Emperor Napoleon III. , it appears that the cost of manufacturing powder at Southampton in 1474 was . 864d. per lb. ;449 and, as it is the only fact available, I have been obliged to assume that this was the cost of making powder in 1347 and 1378. But it is probably not far from the truth. The proportions taken for the 1347 powder are Arderne’s, 6-2-1; those for 1378, 3-1-1. From these data we have:—

1347.1378.
d.          d.      
6 lbs.saltpetre108.            3 lbs.saltpetre60.            
2 “ charcoal0261 lb.charcoal.  02  
1 lb.sulphur8.            1 ” sulphur4.            
Price of 9 lbs.of materials116.026Price of 5 lbs.of materials64.02  
   ”      ” 1 lb.   ”          ”12.892   ”      ” 1 lb.   ”          ”12.80  
Cost of making, per lb.    .    864Cost of making, per lb.    .    864
Price of 1 lb.13.756        Price of 1 lb.                      13.664

The price of French powder in 1375 was 120d.per lb.;450 but in order to be able to compare it with the price of English powder in 1378, we must know the ratio of French to English money at that period.The French Troyes livre then contained 5760 gs.; the English Tower pound 5400 gs.Therefore—

1 livre (pure silver) = 16/15 pound (pure silver).

Under Philip of Valois (1328-50) the livre was debased to 1/12 its original value,451 and almost simultaneously the pound was debased by Edward III. to 4/5 its primitive value.452 Or 1 good livre was worth 12 bad livres, and 1 good pound was worth 5/4 of a bad pound. Therefore—

12 livres = 16/15 (5/4 pound) = 4/3 pound; or 9 livres = 1 pound.

Dividing the price of 1 lb.French powder, 1375, by the price of 1 lb.English powder, 1378, we get 120/13.664 = 8.7; so that the French powder at this period was somewhat cheaper than the English.As the purchasing power of fourteenth-century money was about ten times that of ours, the French powder of 1375 cost about 11s., and the English powder of 1378, 11s.4½d.per lb.

The high price of early gunpowder resulted from high freights and (in the case of saltpetre) the rapacity of Eastern merchants. We may form some notion of the price they exacted for their saltpetre which cost them little,453 from the price they put upon their naphtha which cost them next to nothing. “Another fountayne there is towarde the Oryent whereof is made fyre grekysshe, with other myxtyons (mixtures) that is put thereto; the which fyre when it is taken and lyght is so hote that it can not be quenched with water, but with aysel (vinegar), urine or sande only. The Sarasynes sell this water dere, and derer than they do good wyne.”454

The manufacture of gunpowder soon became a trade.We find a powder-mill in Ausburg in 1340, in Spandau in 1344, and in Liegnitz in 1348.455 There was a gunmaker in Stockholm in 1430, who was very probably a powder-maker too;456 and it is certain that there was a powder-maker there in 1464—Mäster Berend.457 Nor were Governments blind to the importance and the profit of the trade. Beckmann states that the Archbishop of Magdeburg in 1419 only permitted the collection of saltpetre on payment of a license,458 and Clarke informs us that the Pope and the Archduke of Bavaria engaged themselves in powder-making at an early date.459 Louis XI. appointed commissioners in 1477 to collect all the saltpetre they could find, with power to force an entry wherever they suspected it was stored.460

During the Ancient Period, say 1250-1450, when serpentine was exclusively used, one powder could only differ from another in composition, that is, in the proportions of the ingredients used, supposing them to be equally pure; during the Modern Period, say 1700-1886, the powders used (in each individual State) differed only, as a general rule, in the size of the grain;461 during the Transition Period, 1450-1700, they generally differed both in composition and grain.

The proportions of the ingredients were quite arbitrary during the Ancient Period, and not only Governments, but private manufacturers, had their special recipes.As late as 1628 Norton says there were “infinite recipes for making of powder, but most states have enjoyned a certain proportion.”462

The introduction of corning, far from curbing the lawlessness of the Ancient Period, made confusion worse confounded. Then there was but one variable—the proportions of the ingredients; now a second independent variable was introduced—the size of the grain. But a reaction was at hand, which set in first in France, where corned powder had been adopted in 1525.463 It appears to have been noticed during the second half of the fifteenth century that large-grained powder was the fittest for big guns, and this fact the French utilised in 1540 by officially restricting the service powders to three, of uniform composition but different-sized grains.464

The largest-grained powder was used for the largest guns, and the composition was 80.7 salp., 11.5 char., and 7.8 sulph., which closely corresponded to Whitehorne’s (corned) hand-gun powder—78.3 salp., 13 char., and 8.7 sulph.465 It may be questioned, however, whether the French, official injunctions notwithstanding, confined themselves very religiously to powders of uniform composition. Boillot, whose work was published at Chaumont in 1598, says the grain for big guns was as large as a pea, that for medium guns the size of hempseed, and that for serpents, &c. , still smaller. But from a remark he makes on reaching the manufacture of powder—“vous viendrez à la composition (de la pouldre), mais par poix et mesure, selon que vous voudrez faire les pouldres”466—it is clear that powders for all purposes were not of the same composition.

During the first half of the seventeenth century the French official powder was weaker than the above—75.6 salp. , 13.6 char. , and 10.8 sulph. —and for big guns had grains as large as hazel-nuts.467 At Pont-à-Mousson, just across the German border, powders of different compositions were in use in 1620;468 and east of the Rhine powder for different guns probably varied in grain, and certainly varied in composition. “Of the various powders now made,” says Furtenbach in 1627, “the following are generally employed:469

Saltpetre.Charcoal.Sulphur. 
69.016.514.5for big guns;
72.414.513.1for small guns;
75.713.011.3for small arms.”

The information given to us about granulation by the early English gunners is neither clear nor full.

When Whitehorne tells us that the method of corning “all sorts of powder” was the same, namely, by means of a sieve and a few heavy metal balls,470 what meaning did he intend to convey by the phrase “all sorts of powder”? There can be little doubt that he meant “powders of whatever composition, and whatever the size of the grain to be produced;” first, because it would be preposterous to assume that all the sieves of his time had meshes of equal size; and secondly, because there is abundant evidence to show that, long after Whitehorne’s time, the powders for different guns in England (and elsewhere) varied both in composition and grain.In 1620 Thybovril and Hanzelet tell us that powder to be granulated is to be passed through a sieve with holes “de la grosseur que vous desirez votre poudre”;471 and eight years afterwards Norton uses the very same ambiguous phrase, “a syve ... made full of holes of the bignesse you desire your cornes.”472 Did they mean that the size of the grain in their time was purely arbitrary and might be of any magnitude whatever? A passage in Boillot’s (earlier) work explains their meaning much better than they have done it themselves. He first tells us that the sieve is to have holes “de telle grosseur que vous voudrez,” and he then goes on to explain the proper size of grain for use in the different classes of ordnance, as given here on a previous page. In a word, three or four kinds of sieves (differing in the size of their meshes) were procurable—some for graining powder for big guns, others for graining powder for medium guns, &c. &c. —and having fixed upon the gun from which your powder (when grained) was to be fired (and consequently upon the size of the grain), you were to select those sieves which had meshes “of the bignesse you desired your cornes.”

From the phrase used above by Norton, it is certain that several powders, differing in grain, were in use when he wrote; from the evidence of Norton,473 Nye,474 and others, it is equally certain that several different receipts for making powder were in use during their time. The conclusion is that during the first half of the seventeenth century powders made in England for different guns varied both in composition and size of grain.

The lawlessness in composition and grain during the greater part of the Transition Period was the natural consequence of the absence of any instrument to measure the comparative strength of different powders, and enable gunners to establish some standard for the proportions of the ingredients and the size of the grain.

The earliest instrument proposed for testing the strength of powder was, I believe, Bourne’s “engine or little boxe,” which, he says, was “very necessarie to be used.”475 Whether he invented it himself or not, it is impossible to say: he tells us, “some of (the inventions) I have gathered by one meane and some by another, but the most part of them hath been mine own.”476 The engine was a wretched one. The powder to be tested was ignited in a small metal cylinder with a heavy lid (working on a hinge) which when raised could not shut of itself. The angle through which the lid was raised by the explosion indicated the strength of the powder.

A better instrument was that described by Furtenbach in 1627.477 It differed from Bourne’s “little boxe” in that the lid was only laid upon the cylinder. When the powder exploded the lid was blown upwards along two vertical wires which passed through it; but it could not descend again of itself, being held in the place it reached by iron teeth (like those which supported the lid of Bourne’s box). Nye describes this instrument, and suggests that the comparative strength of powders should be further tested by measuring the penetration of pistol balls into clay, and the ranges of projectiles fired from a small mortar.478 This is, I believe, the first proposal of the mortar éprouvette, 1647.The French certainly adopted them before 1686, often though it has been said that they then introduced them.On the 18th September of this year Louis XIV.published an ordonnance complaining of “the variety of eprouvettes” in use for testing powder, and directing that for the future no powder should be accepted unless 3 oz.of it could throw a ball of 60 lbs.50 toises (320 ft.)from the Government pattern mortar.479 In a previous ordonnance (April 16, 1686) the King had protested against the bad charcoal (de méchante qualité) constantly employed; against impure saltpetre (rempli de graisse et de sel), insisting upon the exclusive use of saltpetre “de trois cuites”; and against insufficient incorporation (dix ou douze heures ...au lieu de ...vingt quatre heures).480 But he marred the reforms he made by taking the unaccountable step of introducing one powder, of the same composition and size of grain, for all arms.481 For this blunder the French afterwards paid in blood, especially during the Peninsular war.482

About the beginning of the eighteenth century most countries had reduced their powders to two or three, which were of the same composition, and differed only in grain.In 1742 Benjamin Robins, by his “New Principles of Gunnery,” placed gunnery upon a strictly scientific basis, and by his epoch-making invention of the ballistic pendulums483 enabled gunners for the first time to measure the muzzle-velocity of projectiles with considerable accuracy. It may have been owing to the lessons taught by this instrument that, between 1742 and 1781, we changed the proportions of the ingredients of our powder from 75—12½—12½ to 75—15—10. Profiting by the rapid progress of electricity during the first half of the nineteenth century, Sir Charles Wheatstone proposed in 1840 his electro-magnetic chronoscope,484 which registered to the 1/730 part of a second, to replace Robins’ ponderous pendulum.

Wheatstone’s instrument was not adopted by our Government, but his idea was followed up and improved upon by Captain Navez, of the Belgian Artillery, who in 1847 brought forward his electro-ballistic pendulum.485 Only one instrument was now wanting to enable the mechanical effect of the explosion to be directly and completely observed—an instrument to measure the pressure upon the bore of the gun; and this want was supplied in 1861 when Captain T. J. Rodman, Ordnance Department, United States Army, produced his Indenting Apparatus and his Internal Pressure Gauge.486 The following Table gives the results of some experiments with the new instruments:—

TABLE VI.

Showing the connection between the Size of the Grain, Muzzle Velocity, and Pressure on Bore.

 Diameter of 
Grains.
Ins.
 Charge.   
Lbs.
 Weight of 
Shot.
Lbs.
Muzzle
 Velocity.   
F. s.
Pressure on
 Bottom of Bore.   
Tons per Sq. In.
1843126121.5
15123521.0
2119918.8
25115117.1
3114615.3
4118714.2

This Table shows that as the size of the grain slowly increases, the muzzle velocity decreases very slowly, and the pressure on the bore decreases very quickly.The consequence of this discovery was the manufacture of various very large grained powders such as pebble powder, &c., for heavy guns.But the thorough knowledge of the mechanical effect of the explosion of gunpowder gained by the use of the Navez and Rodman instruments, was of little avail to anybody, for gunpowder had nearly run its course.Just twenty-five years after the introduction of the pressure gauge M.Vieille put the French Government in possession of a nitrocellulose explosive,487 and gunpowder was added to the list of things that were.

Throughout the whole gunpowder period enthusiasts seem never to have been wanting who believed in the possibility of making smokeless powder and noiseless powder.Castner’s powder, which contained only 3 per cent, sulphur, seems to have been the nearest approach to the former, but no powder containing sulphur could be absolutely smokeless.Whether early gunners suspected this or not I do not know; certain it is, however, that sulphurless powder was under discussion centuries ago.Rabelais (who may have heard soldiers talking about the matter) alludes jokingly to “pouldre de canon curieusement composée, degressée de son soulfre.”488 In 1756 the French actually experimented with sulphurless mixtures, one of which (80 per cent. sulph.and 20 per cent.ch.)gave good results in range, with very little smoke.It proved to be worthless for military purposes from the difficulty of corning it, and from its crumbling to dust during ordinary transport.489 The belief in a noiseless powder was scoffed at by Whitehorne: “There be many who bring up lies, saying that they can tell how to make pouder that shooting in gunnes shall make no noise, the which is impossible.” A century afterwards Sir Thomas Browne believed means might be adopted, if not to stifle the sound altogether, at least “to abate the vigour thereof, or silence its bombulation.”490

Tables VII.and VIII.give the composition of gunpowder at various times.

TABLE VII.

English Gunpowder.

  1250491 
cir.
 1482492 
cir.
 1569493  1578494  1588495  1595496  1695497 
Salpetre41.266.6´50.066.6´71.475.075
Charcoal29.422.2´33.3´16.6´14.312.515
Sulphur29.411.1´16.6´16.6´14.312.510

N.B.—All these writers give the proportions of gunpowder in their own times.

TABLE VIII.

Foreign Gunpowder.

 France498
1338
Sweden499
1560
Germany500
1595
Denmark501
1608
France502
1650
Sweden503
1697
Germany504
1882
Saltpetre5066.6´52.268.376.57378
Charcoal?16.6´26.123.213.61719
Sulphur2516.6´21.78.510.8103

CHAPTER XIII

SHOCK PROJECTILES

The nature of the first Artillery projectiles was determined by the nature of the small-arm missiles in use when cannon were introduced by the Germans. To use the bulky and ponderous projectiles of the machines in these small and feeble pieces was out of the question; nothing remained, therefore, but to adopt the darts, bolts, or quarrels which produced such deadly effect when shot from cross-bows:—